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Abstract

In this dissertation we study Markov control processes on Borel spaces,
with possibly unbounded rewards, and a long-run pathwise (or sample-path)
average reward criterion. The first problem we are concerned with is to show
the existence, under suitable assumptions, of stationary policies that maxi-
mize the pathwise average reward. In a second problem we take the latter set
of average optimal policies and show that it contains policies that minimize
the asymptotic variance, and under which the pathwise rewards are asymp-
totically normal. In the remainder of our work we consider constrained prob-
lems. Firstly, we study the case with expected average constraints. We show
the existence of optimal policies, and also that the problem with expected
constraints can be solved by means of a parametric family of so-called opti-
mality equations. Finally, the latter results on expected constraints problems
are extended to the case with pathwise constraints. To conclude, we illus-
trate our results with a detailed analysis of a linear-quadratic problem, and
an inventory system.
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a.e. almost everywhere

a.s. almost surely

i.i.d. independent and identically distributed
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u.s.c. upper semicontinuous
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Notation

end of a proof

:= equality by definition

1B indicator function of a set B

N the set of positive integers {1, 2, · · ·}

N0 the set of nonnegative integers {0, 1, 2, · · ·}

R the set of real numbers

K set of feasible state-acttions pairs

ϕ randomized stationary policy

Φ set of randomized stationary policies

F set of decision functions

X Borel (state) space

B(X) Borel σ-algebra of subsets of X

Cb(X) Banach space of continuous bounded functions on X

Bb(X) Banach space of measurable bounded functions on X

BW (X) Banach space of W -bounded measurable functions on X

M(X) Banach space of finite signed measures on B(X)

P(X) family of Borel probability measures on X
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Chapter 1

Introduction

1.1 Introduction

This thesis deals with discrete-time Markov control processes in Borel spaces,
with unbounded rewards. The criterion to be optimized is a long-run path-
wise average reward subject to constraints on a finite numbers of long-run
pathwise average costs. These problems form an important class of stochas-
tic control problems with applications in many areas, including mathemat-
ical economics, queueing systems, epidemic processes, etc.; see, for instance
[3, 7, 12, 13, 24] as well as the books [1] and [23].

However, most of the related literature is concentrated on expected av-
erage constraints. In contrast, for problems with pathwise constraints there
are a lot fewer works. For instance, for finite state MCPs, we should mention
the article by Haviv [12], and the works by Ross and Varadarajan [26, 27].
For MCPs on Borel spaces we only know the recent work by Vega-Amaya
[31]. The article by Haviv shows, by means of examples, that pathwise con-
straints are in general, more “natural” than expected constraints, because
MCPs with constraints on the expected state-action frequencies can lead to
optimal policies that do not satisfy certain principles of optimality (as Bell-
man’s principle). In contrast, the model with pathwise constraints leads to
feasible optimal policies which satisfy these principles of optimality.

As can be seen in the related literature, there are several standard tech-
niques to analyze the expected constraints problem. For example, the so-
called direct method, where the idea is to transform the problem into an
equivalent optimization problem in a suitable space of measures. Moreover,

1



CHAPTER 1. INTRODUCTION 2

under appropiate hypotheses, the latter problem can be transformed into
either a convex-analytical problem or an infinite-dimensional linear program
depending on the underlying assumptions. In this work, to obtain our main
results, we use the direct metod in combination with other techniques such
as convex analysis, Lagrange multipliers and dynamic programming.

We extend our results on the expected case to the pathwise problem using
a strong law of large number for Markov chains and the so-called stability
theorem for martingales. In particular, we prove that optimal policies in the
former case are also optimal for the pathwise problem.

For the uncounstrained case, we prove the equivalence between pathwise
average reward optimal policies and expected average reward optimal poli-
cies. Moreover, we study the existence of canonical policies that minimizes
the limiting average variance. We also prove that under appropiate growth
conditions on the reward, this canonical policies have an asymptotic normal-
ity behavior.

1.2 Summary

The material in this thesis is organized as follows.
In the remainder of this chapter we introduce some background material

on Markov control models (MCM) (Section 1.3 and Section 1.4).
In Chapter 2 we give our preliminary results used throughout this work.

Under fixed point arguments, we consider the uncounstrained expected aver-
age reward MCPs. The motivation of this chapter is to give explicit expres-
sions for the invariant measures, also for the functions h∗ϕ that solve the P.E.,
and the functions h∗ that solve an average reward optimality equation. This
fact will be particularly useful to prove boundedness conditions, necessary
for asymptotic behaviors (law of large numbers, asymptotic normality) and
to prove compactness conditions.

In Chapter 3 we establish the existence of unconstrained pathwise av-
erage optimal policies assuming additional assumptions that guarantee the
application of the martingale stability theorem to obtain certain pathwise
ergodic limits. Moreover, under our hypotheses, the equivalence between
sample-path average optimal policies and expected average optimal policies
is assured.

In Chapter 4 we study the existence of a stationary canonical policy that
minimizes the limiting average variance in the class Fcp. As a consequence,
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we have that under certain growth condition, we prove that these canonical
policies have an asymptotic normality behavior.

In Chapter 5 we study constrained MCPs. Here, we use a conjunction
of techniques, including the direct method, convex analysis, Lagrange mul-
tipliers and dynamic programming, to establish the existence of solutions
of certain average reward optimality equation, which in particular provides
optimal policies to our problem with expected constraints. We also show
that the expected constrained problem (CP) can be solved by means of a
parametric family of AROEs, which do not depend on unknown parameters.
Furthermore, we extend these results to MCPs with pathwise constraints.

In Chapter 6 we illustrate with some examples the results obtained in the
previous chapters.

Finally, in Chapter 7 we state some general conclusions of our work, as
well as some open problems.

1.3 Preliminaries

The material in this section is quite standard and we refer the reader to the
books [14, 15] for a detailed description.

Consider a discrete-time Markov control model (MCM)

(X, A, {A(x) : x ∈ X}, Q, r),

with state space X and control (or action) set A, both assumed to be Borel
spaces with Borel σ-algebras B(X) and B(A), respectively. The family
{A(x) : x ∈ X} consists of nonempty sets A(x) ∈ B(A), with A(x) being the
set of feasible controls (or actions) in the state x ∈ X. The set

K := {(x, a) : x ∈ X, a ∈ A(x)} (1.3.1)

of feasible state-actions pairs is supposed to be a Borel subset of X × A.
Moreover, the transition law

Q = {Q(B|x, a) : B ∈ B(X), (x, a) ∈ K} (1.3.2)

is a stochastic kernel on X given K, whereas r : K → R is a measurable
function called the reward-per-stage. Throughout the remainder of this work,
a fixed MCM is assumed to be given.
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Definition 1.3.1 Let F be the set of all decision functions or selectors, i.e.,
measurable functions f : X → A such that f(x) is in A(x) for all x ∈ X,
and let Φ be for the set of stochastic kernels ϕ on A given X for which
ϕ(A(x)|x) = 1.

Remark 1.3.2 A selector f ∈ F may be identified with the stochastic kernel
ϕ ∈ Φ for which ϕ(·|x) is the Dirac measure at f(x) for all x ∈ X. Hence,
we have F ⊂ Φ.

We shall assume that F is nonempty, or equivalently, that the set K in
(1.3.1) contains the graph of a measurable function from X to A. This as-
sumptions ensures that the set of control policies, defined below, is nonempty
(see, for instance, [14, Chapter 2]).

Let N0 := {0, 1, · · ·} and N := {1, 2, · · ·}.

Definition 1.3.3 (Control Policies). For every n ∈ N, let Hn be the
family of admissible histories up to time n; that is, H0 := X, and Hn :=
K × Hn−1 if n ≥ 1. A (randomized) control policy is a sequence π = {πn}
of stochastic kernels πn on A given Hn such that

πn(A(xn)|hn) = 1 (1.3.3)

for every n-history hn = (x0, a0, · · · , xn−1, an−1, xn) in Hn. Let Π denote the
set of all control policies. Moreover, a control policy π = {πn} is said to be a

(a) randomized Markov policy if there exists a sequence {ϕn} of stochastic
kernels ϕn ∈ Φ such that

πn(·|hn) = ϕn(·|xn) ∀hn ∈ Hn, n ∈ N0; (1.3.4)

(b) (randomized) stationary policy if there exists a stochastic kernel ϕ ∈ Φ
such that

πn(·|hn) = ϕ(·|xn) ∀hn ∈ Hn, n ∈ N0; (1.3.5)

(c) deterministic stationary policy if there is a selector f ∈ F such that
πn(·|hn) is the Dirac measure at f(xn) ∈ A(xn) for all hn ∈ Hn and
n ∈ N0.
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The set of all randomized Markov policies is denoted by ΠRM . As usual,
we identify Φ, the set of stochastic kernels on A given X, with the set of
all randomized stationary policies, and F with the set of all deterministic
stationary policies. Note that

F ⊂ Φ ⊂ ΠRM ⊂ Π.

If π = {ϕ} is a stationary policy, abusing the notation we write π = ϕ.

1.4 The canonical construction

For future reference, in this section we present the canonical construction of
the underlying probability space.

Let (Ω,F) be the (canonical) measurable space consisting of the sample
space Ω := (X × A)∞ and its product σ-algebra F . The elements of Ω are
sequences of the form ω = (x0, a0, x1, a1, · · ·) with xn in X and an in A for
all n = 0, 1, · · ·; the projections xn and an from Ω to the sets X and A are
called state and control (or action) variables, respectively. Observe that Ω
contains the space H∞ := K

∞ of admisible histories (x0, a0, x1, a1, · · ·) with
(xn, an) ∈ K for each n ∈ N0.

Let π = {πn} be an arbitrary control policy and ν an arbitrary probability
measure on X, referred to as the “initial distribution”. Then, by a theorem
of C. Ionescu-Tulcea (see, for instance, [14, Proposition C.10 and Remark
C.11]) there exists a unique probability measure P π

ν defined on the sample
space (Ω,F), which by (1.3.3) is supported on H∞, namely, P π

ν (H∞) = 1,
and, moreover, for all B ∈ B(X), C ∈ B(A), and hn ∈ Hn, n = 0, 1, · · ·:

P π
ν (x0 ∈ B) = ν(B), (1.4.1)

P π
ν (an ∈ C|hn) = πn(C|hn), (1.4.2)

P π
ν (xn+1 ∈ B|hn, an) = Q(B|xn, an). (1.4.3)

From the theorem of C. Ionescu-Tulcea mentioned above also ensures that
the measure P π

ν can be written in the form

P π
ν (dx0, da0, dx1, da1, dx2, · · ·) = ν(dx0)π0(da0|x0)Q(dx1|x0, a0)·

·π1(da1|x0, a0, x1)Q(dx2|x1, a1) · · · . (1.4.4)
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Definition 1.4.1 The stochastic process (Ω,F , P π
ν , {xn}) is called a discrete-

time Markov control Process (MCP), which is also known as a Markov de-
cision process.

Remark 1.4.2 Notation

(a) The expectation operator with respect to P π
ν is denoted by Eπ

ν . If ν is
concentrated at the “initial state” x ∈ X, then we write P π

ν and Eπ
ν

as P π
x and Eπ

x , respectively. Moreover, if π = ϕ is a stationary policy,
then we denote P π

ν and Eπ
ν as Pϕ

ν and Eϕ
ν , respectively.

(b) Let ϕ ∈ Φ be a stochastic kernel on A given X, c a measurable function
on K, and Q the transition law in (1.3.2). Then we define, for every
x ∈ X,

cϕ(x) :=

∫

A

c(x, a)ϕ(da|x) (1.4.5)

and

Qϕ(·|x) :=

∫

A

Q(·|x, a)ϕ(da|x). (1.4.6)

In particular, for a function f ∈ F, (1.4.5)-(1.4.6) become

cf (x) = c(x, f(x)) and Qf (B|x) = Q(B|x, f(x)).

Proposition 1.4.3 Let ν be an arbitrary initial distribution. If π = {ϕn} is
a randomized Markov policy, then {xn} is a nonhomogeneus Markov process
with transition kernels {Qϕn

(·|·)}, that is, for every B ∈ B(X) and n =
0, 1, · · ·,

P π
ν (xn+1 ∈ B|x0, · · · , xn) = P π

ν (xn+1 ∈ B|xn) (1.4.7)

= Qϕn
(B|xn)

For a proof of Proposition 1.4.3 see [14, p. 19-20].
In Proposition 1.4.3, let π = ϕ be a stationary policy. The n-step transi-

tion probabilities are denoted by Qn
ϕ, that is

Qn
ϕ(B|x) := Pϕ

x (xn ∈ B), n ∈ N0, B ∈ B(X), x ∈ X, (1.4.8)
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with Q1
ϕ(·|x) := Qϕ(·|x) and Q0

ϕ(·|x) = δx, the Dirac measure concentrated
at the initial state x. We can write Qn

ϕ recursively as

Qn
ϕ(B|x) =

∫

X

Qϕ(B|y)Qn−1
ϕ (dy|x)

=

∫

X

Qn−1
ϕ (B|y)Qϕ(dy|x), n ≥ 1. (1.4.9)

1.5 Weighted-norm spaces

Let X be a metric space, and let Bb(X) be the Banach space of real-valued
measurable bounded functions u on X, with the supremum norm

‖u‖ := sup
x∈X

|u(x)|.

We denote by Cb(X) the closed subspace of Bb(X) of all continuous bounded
functions on X.

We assume throughout the following that W : X → [θ,∞) denotes a
given measurable function that will be referred to as a weight function, where
θ > 0. If u is a real-valued function on X, we define its W-norm as

‖u‖W := sup
x∈X

|u(x)|/W (x). (1.5.1)

Of course, if W is the constant function W (·) ≡ 1, the W -norm and the
supremum norm coincide.

A real-valued function u on X is said to be bounded if ‖u‖ <∞ and W-
bounded if ‖u‖W <∞. In general, the weight function W will be unbounded,
although it is obviously W -bounded since ‖W‖W = 1. On the other hand, if
u is a bounded function then it is W -bounded, since W ≥ θ yields

‖u‖W ≤ 1

θ
‖u‖ <∞ ∀u ∈ Bb(X). (1.5.2)

Let BW (X) be the normed linear space of W -bounded real-valued mea-
surable functions u on X. This space is also a Banach space because if {un}
is a Cauchy sequence in the W -norm, then {un/W} is Cauchy in the supre-
mum norm; hence, as Bb(X) is a Banach space, one can deduce the existence
of a function u in BW (X) that is the W -limit of {un}. Combining this fact
and (1.5.2) we obtain the following:
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Proposition 1.5.1 BW (X) is a Banach space that contains Bb(X).

We denote by CW (X) the linear subspace of BW (X) that consists of the
continuous function on X.



Chapter 2

The optimality equation

For every policy π ∈ Π and initial state x ∈ X, let

J(π, x) := lim inf
n→∞

1

n
Eπ

x

[ n−1∑

k=0

r(xk, ak)
]

be the corresponding long-run expected average reward (EAR). In this chap-
ter we consider the so-called EAR control problem in which we wish to max-
imize π 7→ J(π, x) over all π ∈ Π. More precisely, we wish to find π∗ ∈ Π
such that

J(π∗, x) = sup
π∈Π

J(π, x) ∀x ∈ X.

Our goal is to characterize such EAR-optimal policies π∗ and to give condi-
tions ensuring the existence of an EAR-optimal stationary policy. This is a
standard result that can be obtained in a variety of ways. Here, we follow
the approach by Vega-Amaya [30], based on “fixed point arguments” to ob-
tain solutions to the Poisson equation (P.E.) (see Theorem 2.1.4) and to the
Average Reward Optimality Equation (AROE) (see Theorem 2.4.3). These
results are used troughout the rest of this work. We extend the results ob-
tained by Vega-Amaya [30] to the set of all randomized stationary policies Φ.
For completeness we prove these results, although the proofs are just slight
modifications of those in [30].

9
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2.1 The Poisson equation

In this section we study the Poisson equation (P.E.) in (2.1.4) below. In
particular, we prove, under suitable conditions, the existence of solutions to
the P.E. To this end, we shall introduce two sets of hypotheses. The first
one, Assumption 2.1.1 below, uses a weight function W to impose a growth
condition on the reward function. The second one, Assumption 2.1.2, imposes
a Lyapunov condition that will yield that certain operator is a contraction
on the space BW (X), defined in Section 1.5. The Assumptions 2.1.1, 2.1.2
will ensure the existence of a fixed point for this operator (see Lemma 2.2.1),
which in turn yields the solution to the P.E.

Assumption 2.1.2 was previously used for Markov control processes on
Borel spaces (see, for instance, [9], [10], [20] and [19]) but it was combined
with additional conditions that imply W -geometric ergodicity. The approach
in this section is quite different, because the basic idea is to use Banach’s
fixed point theorem and we do not need to introduce W -geometric ergodicity.

Let (X, A, {A(x) : x ∈ X}, Q, r) be a Markov control model as defined in
Section 1.3. The function W in the following assumption will play the role
of a weight function, as in Section 1.5.

Assumption 2.1.1 There exist a constant K > 0 and a measurable function
W (·) on X such that:

(a) W is bounded below by a constant θ > 0.

(b) |r(x, a)| ≤ KW (x) for all (x, a) ∈ K.

Let γ(·) be a measure on X. We write

γ(u) :=

∫

X

u(x)γ(dx)

whenever the integral is well-defined. We will now state our second main
assumption:

Assumption 2.1.2 There exists a non-trivial finite measure ν(·) on X, a
nonnegative measurable function l(·, ·) on K and a positive constant λ < 1
such that:

(a) ν(W ) <∞.
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(b) Q(·|x, a) ≥ l(x, a)ν(·) for each (x, a) ∈ K.

(c)
∫
X
W (y)Q(dy|x, a) ≤ λW (x) + l(x, a)ν(W ) for each (x, a) ∈ K.

(d) ν(lϕ) > 0 for each ϕ ∈ Φ, with lϕ(·) as in (1.4.5) with l in lieu of c.

Remark 2.1.3 Assumption 2.1.1(a) and iterations of the inequality in As-
sumption 2.1.2(c) yield, for every x ∈ X, π ∈ Π, and n = 0, 1, · · ·,

θ ≤ Eπ
xW (xn) ≤ λnW (x) +

ν(W )

(1 − λ)ν(X)
. (2.1.1)

This fact and (1.5.1) yield that for every u ∈ BW (X)

lim
n→∞

1

n
Eπ

x |u(xn)| = 0. (2.1.2)

We can now state our first main result, where we use the notation rϕ and
Qϕ introduced in (1.4.5) and (1.4.6), respectively.

Theorem 2.1.4 Under Assumptions 2.1.1 and 2.1.2 the following facts hold
for each ϕ ∈ Φ:

(i) The Markov chain defined by Qϕ(·|·) is ν-irreducible and positive Har-
ris recurrent; hence it admits a unique invariant probability measure
(i.p.m.), say µϕ.

(ii) µϕ(W ) <∞; thus we have

ρϕ := µϕ(rϕ) <∞, ρ∗ := sup
ϕ∈Φ

ρϕ <∞. (2.1.3)

(iii) There exist a function h∗ϕ in BW (X) such that the pair (ρϕ, h
∗
ϕ) satisfies

the P.E.

h∗ϕ(x) = rϕ(x) − ρϕ +

∫

X

h∗ϕ(y)Qϕ(dy|x) ∀x ∈ X, (2.1.4)

and, moreover, ν(h∗ϕ) = 0.

Since the proof of Theorem 2.1.4 is a bit long, we postpone it to the next
section.
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2.2 Proof of Theorem 2.1.4

Before proving Theorem 2.1.4 we shall introduce some concepts and prelim-
inary results.

Define
Q̂(B|x, a) := Q(B|x, a) − ν(B)l(x, a), (2.2.1)

for each B ∈ B(X) and (x, a) ∈ K. Under Assumption 2.1.2(b), Q̂ is a non-

negative kernel on X given K, and from Assumption 2.1.2(c) Q̂ is contractive
in the sense that

∫

X

W (y)Q̂(dy|x, a) ≤ λW (x) ∀(x, a) ∈ K. (2.2.2)

Let us fix ϕ ∈ Φ and v ∈ BW (X) and define Lv
ϕ : BW (X) → BW (X) by

Lv
ϕu(x) := v(x) +

∫

X

u(y)Q̂ϕ(dy|x)

= v(x) +

∫

X

u(y)Qϕ(dy|x) − ν(u)lϕ(x)

(2.2.3)

for every x ∈ X, u ∈ BW (X).

Lemma 2.2.1 Suppose that Assumptions 2.1.1 and 2.1.2 hold. Then for
each ϕ ∈ Φ and v ∈ BW (X), the operator Lv

ϕ is a contraction with modulus λ
on the Banach space BW (X). Hence, by Banach’s fixed point theorem, there
exists a unique function hv

ϕ ∈ BW (X) such that Lv
ϕh

v
ϕ = hv

ϕ, i.e.,

hv
ϕ(x) = v(x) +

∫

X

hv
ϕ(y)Qϕ(dy|x) − ν(hv

ϕ)lϕ(x) ∀x ∈ X. (2.2.4)

Proof. From (2.2.2), it can be verified that Lv
ϕ is a contraction on the Banach

space BW (X). Therefore, by Banach’s fixed point theorem there is a unique
function hv

ϕ ∈ BW (X) satisfying (2.2.4).
The following remark is used throughout the rest of this work.

Remark 2.2.2 Banach’s fixed point theorem gives an explicit formula for
hv

ϕ in Lemma 2.2.1:

hv
ϕ(x) =

∞∑

n=0

∫

X

v(y)Q̂n
ϕ(dy|x) ∀x ∈ X. (2.2.5)
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The series in (2.2.5) converges absolutely in the Banach space BW (X). More-
over, we can define an endomorphism Hϕ : BW (X) → BW (X), with Hϕv :=
hv

ϕ. By (2.2.5), we have

Hϕv(x) = hv
ϕ(x) =

∞∑

n=0

∫

X

v(y)Q̂n
ϕ(dy|x) ∀x ∈ X, v ∈ BW (X). (2.2.6)

On the other hand, one can show that, for each x ∈ X, the series

Pϕ(dy|x) :=
∞∑

n=0

Q̂n
ϕ(dy|x) (2.2.7)

converges in the Banach space of finite signed measures on (X,B(X)). Thus
we may rewrite (2.2.6) as

Hϕv(x) = hv
ϕ(x) =

∫

X

v(y)Pϕ(dy|x) ∀x ∈ X, v ∈ BW (X). (2.2.8)

where Pϕ(dy|x) is the kernel on X defined in (2.2.7).
Note that

‖Hϕ‖W ≤ 1/(1 − λ). (2.2.9)

Finally, Hϕ preserves order, that is, if u ≤ v then hu
ϕ ≤ hv

ϕ for all u and
v in BW (X).

Lemma 2.2.3 If Assumptions 2.1.1 and 2.1.2 are satisfied, then for each
ϕ ∈ Φ

lim
n→∞

1

n
Eϕ

x

n−1∑

k=0

lϕ(xk) =
1

ν(h1
ϕ)
> 0, (2.2.10)

where h1
ϕ is the function hv

ϕ in (2.2.4) with v ≡ 1, i.e. by (2.2.6)–(2.2.7),

h1
ϕ(·) := Hϕ(1X)(·) = Pϕ(X|·). (2.2.11)

Proof. Let ϕ ∈ Φ be arbitrary and take v ≡ 1. By Lemma 2.2.1, there
exists a unique function h1

ϕ ∈ BW (X) such that

h1
ϕ(x) = 1 +

∫

X

h1
ϕ(y)Qϕ(dy|x) − ν(h1

ϕ)lϕ(x) ∀x ∈ X.
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By an iteration procedure we obtain

h1
ϕ(x) = n− ν(h1

ϕ)Eϕ
x

n−1∑

k=0

lϕ(xk) + Eϕ
xh

1
ϕ(xn) ∀x ∈ X, n = 1, · · · .

Multiplying by 1/n and letting n→ ∞, it follows from (2.1.2) that

ν(h1
ϕ) lim

n→∞

1

n
Eϕ

x

n−1∑

k=0

lϕ(xk) = 1 ∀x ∈ X,

which implies (2.2.10).
We are ready for the proof of Theorem 2.1.4.

Proof of Theorem 2.1.4 Consider an arbitrary stationary policy ϕ ∈ Φ.
(i) By Lemma 2.2.1, for each v ∈ BW (X), there exists a unique function

hv
ϕ ∈ BW (X) satisfying (2.2.4), i.e.,

hv
ϕ(x) = v(x) +

∫

X

hv
ϕ(y)Qϕ(dy|x) − ν(hv

ϕ)lϕ(x) ∀x ∈ X.

Thus, by iteration, we have

hv
ϕ(x) = Eϕ

x

n−1∑

k=0

v(xk) − ν(hv
ϕ)Eϕ

x

n−1∑

k=0

lϕ(xk) + Eϕ
xh

v
ϕ(xn)

for every x ∈ X, and n = 1, · · ·. Hence, by (2.1.2) and Lemma 2.2.3, we
obtain

lim
n→∞

1

n
Eϕ

x

n−1∑

k=0

v(xk) = ν(hv
ϕ) lim

n→∞

1

n
Eϕ

x

n−1∑

k=0

lϕ(xk)

=
1

ν(h1
ϕ)
ν(Hϕv) <∞

(2.2.12)

for all v ∈ BW (X). Now, in (2.2.12) take v ≡ 1B, with B ∈ B(X). Then

lim
n→∞

1

n

n−1∑

k=0

Qk
ϕ(B|x) = lim

n→∞

1

n
Eϕ

x

n−1∑

k=0

1B(xk) =
ν(h1B

ϕ )

ν(h1
ϕ)

<∞ ∀x ∈ X.

This result and [16, Theorem 4.3.1] give the following facts:
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(I) The transition probability Qϕ(·|·) is positive Harris recurrent; hence, it
is irreducible and it has a unique i.p.m. µϕ.

(II) For any bounded measurable function v on X,

lim
n→∞

1

n
Eϕ

x

n−1∑

k=0

v(xk) = µϕ(v) ∀x ∈ X, (2.2.13)

which implies, with v ≡ lϕ,

lim
n→∞

1

n
Eϕ

x

n−1∑

k=0

lϕ(xk) = µϕ(lϕ).

By (2.2.10), we obtain

µϕ(lϕ) =
1

ν(h1
ϕ)
> 0. (2.2.14)

Therefore, to complete the proof of part (i) it suffices to show that ν(·)
is an irreducibility measure. In fact, by a characterization of ν-irreducibility
(see, for instance,[22, Proposition 4.2.1]), we only need to prove that for all
x ∈ X, whenever ν(B) > 0, there exists some m > 0, possibly depending on
ϕ, B and x, such that Qm

ϕ (B|x) > 0. Let B ∈ B(X) be such that ν(B) > 0.
By Assumption 2.1.2(b) and the invariance of µϕ yield

µϕ(B) ≥ ν(B)µϕ(lϕ).

This inequality together with µϕ(lϕ) > 0 (see (2.2.14)) gives that µϕ(B) > 0.
Hence, by (2.2.13) with v ≡ 1B, we have

lim
n→∞

1

n

n−1∑

k=0

Qk
ϕ(B|x) = µϕ(B) > 0.

This implies the existence of m > 0 such that Qm
ϕ (B|x) > 0, and so the

desired result follows.
(ii) By (2.2.12) and (2.2.13), we see that every bounded measurable func-

tion v on X satisfies the formula

µϕ(v) =
ν(hv

ϕ)

ν(h1
ϕ)

=
1

ν(h1
ϕ)
ν(Hϕv). (2.2.15)
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Hence, for every nonnegative bounded measurable function w satisfying 0 ≤
w ≤ W , with W as in Assumption 2.1.1

µϕ(w) =
1

ν(h1
ϕ)
ν(Hϕw) ≤ 1

ν(h1
ϕ)
ν(HϕW )

because Hϕ preserves order. Since any nonnegative measurable function
is the limit of a nondecreasing sequence of nonnegative bounded measur-
able functions, together with the monotone convergence theorem (see, for
instance, [25]), we obtain

µϕ(W ) ≤ 1

ν(h1
ϕ)
ν(HϕW ) <∞.

Thus, to complete the proof of part (ii), it only remains to verify (2.1.3).
Assumption 2.1.2(b) yields l(x, a) ≤ 1/ν(X) for each (x, a) ∈ K, and so

µϕ(lϕ) ≤ 1

ν(X)
∀ϕ ∈ Φ.

On the other hand, Assumption 2.1.2(c) implies
∫
X
W (y)Qϕ(dy|x) ≤

λW (x) + lϕ(x)ν(W ). Integrating both sides of this inequality with respect
to µϕ, and using that µϕ(W ) <∞, we obtain

µϕ(W ) ≤ µϕ(lϕ)ν(W )

1 − λ
≤ ν(W )

(1 − λ)ν(X)
. (2.2.16)

Assumption 2.1.1(b) yields

ρϕ = µϕ(rϕ) ≤ Kµϕ(W ) ∀ϕ ∈ Φ. (2.2.17)

Thus, by (2.2.16),

ρ∗ := sup
ϕ∈Φ

ρϕ ≤ K sup
ϕ∈Φ

µϕ(W ) ≤ Kν(W )

(1 − λ)ν(X)
<∞.

This completes the proof of part (ii).
(iii) To prove this part let us take v = rϕ − ρϕ in Lemma 2.2.1 to obtain

a function hv
ϕ satisfying (2.2.4). Define h∗ϕ := hv

ϕ for this particular v. Then
we obtain

h∗ϕ(x) = rϕ(x) − ρϕ +

∫

X

h∗ϕ(y)Qϕ(dy|x) − ν(h∗ϕ)lϕ(x) (2.2.18)



CHAPTER 2. THE OPTIMALITY EQUATION 17

for every x ∈ X. Integrating both sides of (2.2.18) with respect to the i.p.m.
µϕ, we can see that

ν(h∗ϕ)µϕ(lϕ) = 0.

However, since µϕ(lϕ) > 0 (see (2.2.14)), the latter relation yields that
ν(h∗ϕ) = 0 and, hence, (2.2.18) reduces to the P.E. (2.1.4).

Remark 2.2.4 The unique i.p.m. µϕ in Theorem 2.1.4(i) can be expressed
as

µϕ(·) =
1

ν(h1
ϕ)

∫

X

Pϕ(·|x)ν(dx). (2.2.19)

Indeed, since µϕ(W ) <∞, from Lebesgue’s dominated convergence theorem,
we can see that (2.2.15) is satisfied for every function v in BW (X):

µϕ(v) =
1

ν(h1
ϕ)

∫

X

[ ∫

X

v(y)Pϕ(dy|x)
]
ν(dx)

=
1

ν(h1
ϕ)
ν(Hϕv). (2.2.20)

Moreover, comparing (2.2.20) and (2.2.12), we obtain the limit

lim
n→∞

1

n
Eϕ

x

n−1∑

k=0

v(xk) = µϕ(v) ∀v ∈ BW (X), (2.2.21)

which gives (2.2.19).

2.3 Uniqueness of solutions to the P.E.

To prove uniqueness of the functions h∗ϕ satisfying the P.E. (2.1.4), we need
the following lemma.

Lemma 2.3.1 Suppose that Assumptions 2.1.1 and 2.1.2 hold. Let v, h, h̃
be functions belonging to BW (X), and ϕ ∈ Φ. Suppose that

h(x) = v(x) +

∫

X

h(y)Qϕ(dy|x) ∀x ∈ X,

and

h̃(x) = v(x) +

∫

X

h̃(y)Qϕ(dy|x) ∀x ∈ X.
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Then h(·) and h̃(·) differ by a constant, i.e.,

h(x) − h̃(x) = c(ϕ) ∀x ∈ X,

where c(ϕ) is the constant c(ϕ) := µϕ(h− h̃).

Proof. Let u := h− h̃. The hypotheses yield u(x) =
∫
X
u(y)Qϕ(dy|x) for all

x ∈ X. Hence, by induction,

u(x) =

∫

X

u(y)Qn
ϕ(dy|x) ∀x ∈ X, n = 0, 1, · · · . (2.3.1)

By (2.2.21), as n→ ∞ we obtain

u(x) =
1

n
Eϕ

x

n−1∑

k=0

u(xk) → µϕ(u) ∀x ∈ X.

Thus, u(x) = h(x) − h̃(x) = µϕ(u) for all x ∈ X.

Proposition 2.3.2 With the notation of Theorem 2.1.4, if h ∈ BW (X) is a
function satisfying the P.E. (2.1.4), then h(x)−h∗ϕ(x) = c(ϕ) for each x ∈ X
and some constant c(ϕ). Moreover, h = h∗ϕ iff ν(h) = 0. In particular, h∗ϕ is
the unique function in BW (X) satifying the P.E. and such that ν(h∗ϕ) = 0.

Proof. This result follows from Lemma 2.3.1

Remark 2.3.3 The functions h∗ϕ in Theorem 2.1.4(iii), satisfying the P.E.
(2.1.4), are defined in similar form as the ones in [18, Lemma 4.1]. Actually,
by (2.2.5), we can write h∗ϕ as

h∗ϕ(x) =
∞∑

n=0

∫

X

[rϕ(y) − ρϕ]Q̂n
ϕ(dy|x) =

∫

X

[rϕ(y) − ρϕ]Pϕ(dy|x) (2.3.2)

for all x ∈ X, with Pϕ(dy|x) as in (2.2.7), while in [18], due to W-geometric
ergodicity, the corresponding function is given by

h∗ϕ(x) =
∞∑

n=0

∫

X

[rϕ(y) − ρϕ]Qn
ϕ(dy|x) ∀x ∈ X.
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2.4 The optimality equation

In this section, we characterize optimal policies by means of the average
reward optimality equation (AROE). To this end, we introduce the long-
run expected average reward per unit-time criterion, hereafter abbreviated
average reward criterion, which is defined as follows.

Definition 2.4.1 Let (X, A, {A(x) : x ∈ X}, Q, r) be a given MCM (see
Section 1.3 above), and let

Jn(π, x) := Eπ
x

[ n−1∑

k=0

r(xk, ak)

]
(2.4.1)

be the total expected n-stage reward when using the policy π, given the initial
state x0 = x. Then the long-run expected average reward (EAR) when using
π ∈ Π, given x0 = x, is

J(π, x) := lim inf
n→∞

Jn(π, x)/n. (2.4.2)

The EAR problem is to find a policy π∗ such that

J(π∗, x) := sup
π∈Π

J(π, x) =: J∗(x) ∀x ∈ X. (2.4.3)

A policy π∗ that satisfies (2.4.3) is said to be EAR-optimal and J∗(·) is
called the EAR-value function.

In contrast to (2.4.2), we define

J̄(π, x) := lim sup
n→∞

Jn(π, x)/n. (2.4.4)

Note that
J̄(π, x) ≥ J(π, x)

for every control policy π ∈ Π and state x ∈ X.
In addition to Assumptions 2.1.1 and 2.1.2, we next impose other condi-

tions on the control model. Several versions of these conditions have appeared
in the literature (see, for instance, [18, 20, 19, 29, 30]), but the main ideas
go back to [9, 10].

Assumption 2.4.2 For each x ∈ X:
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(a) A(x) is a (nonempty) compact subset of A.

(b) r(x, ·) is upper semicontinuous (u.s.c.) on A(x).

(c) Q(·|x, ·) is strongly continuous on A(x), that is, the mapping

a→
∫

X

u(y)Q(dy|x, a)

is continuous on A(x) for each bounded measurable function u on X.

(d) The mapping a→
∫
X
W (y)Q(dy|x, a) is continuous on A(x), with W as

in Assumption 2.1.1.

(e) l(x, ·) is continuous on A(x), with l(·, ·) as in Assumption 2.1.2.

The next theorem establishes the existence of solutions to the so–called
average reward optimality equation (AROE) in (2.4.5) below. Moreover, it
characterizes optimal policies by means of the AROE.

Theorem 2.4.3 Suppose that Assumptions 2.1.1, 2.1.2 and 2.4.2 hold. Then:

(i) There exists a triplet (h∗, f ∗, ρ∗), with h∗ ∈ BW (X), f ∗ ∈ F, and ρ∗ as
in (2.1.3), that satisfies the AROE

h∗(x) = sup
a∈A(x)

[
r(x, a) − ρ∗ +

∫

X

h∗(y)Q(dy|x, a)
]

(2.4.5)

= rf∗(x) − ρ∗ +

∫

X

h∗(y)Qf∗(dy|x) ∀x ∈ X.

(ii) Moreover,
ρ∗ = J(f ∗, x) ≥ J̄(π, x) ≥ J(π, x)

for all x ∈ X and π ∈ Π. Hence, the constant ρ∗ = J∗(x) is the
EAR-value and f ∗ is an EAR-optimal policy.

We give a proof (in Section 2.6) taken from [30, Theorems 3.10 and 3.12].
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2.5 Preliminary results

We define, for each u ∈ BW (X) and x ∈ X

T̂∗u(x) := sup
a∈A(x)

[
r(x, a) − ρ∗ +

∫

X

u(y)Q̂(dy|x, a)
]

(2.5.1)

with Q̂ as in (2.2.1).
To prove Theorem 2.4.3 we need the two following lemmas. These are

standard dynamic programming results, but we state them here (including
the proof of Lemma 2.5.2) for completeness and ease of reference.

Lemma 2.5.1 Suppose that Assumptions 2.1.1, 2.1.2 and 2.4.2 hold. Then
for each u ∈ BW (X) there exists f ∈ F such that

T̂∗u(x) = rf (x) − ρ∗ +

∫

X

u(y)Q̂f (dy|x) ∀x ∈ X. (2.5.2)

Hence, T̂∗u is measurable and it belongs to BW (X).

Proof. See [17, Proposition 2.6].

Lemma 2.5.2 Suppose that Assumptions 2.1.1, 2.1.2 and 2.4.2 hold. In
addition, suppose that there exists a function h∗ ∈ BW (X) and a constant ρ0

satisfying

h∗(x) = sup
a∈A(x)

[
r(x, a) − ρ0 +

∫

X

h∗(y)Q(dy|x, a)
]

∀x ∈ X. (2.5.3)

Then we have

ρ0 ≥ J̄(π, x) ≥ J(π, x) ∀x ∈ X, π ∈ Π. (2.5.4)

Proof. Let π ∈ Π be an arbitrary policy. Recall from (1.4.4) that

P π
ν0

(dx0, da0, dx1, da1, · · ·) = ν0(dx0)π0(da0|x0)Q(dx1|x0, a0)π1(da1|h1) · · ·

where ν0 is the initial distribution.
The formula (2.5.3) gives us

h∗(x) + ρ0 ≥ r(x, a) +

∫

X

h∗(y)Q(dy|x, a) ∀(x, a) ∈ K.
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Taking ν0(dx0) = δx(dx0), the latter inequality yields

∫

X

h∗(x0)δx(dx0)π0(da0|x0)+ρ
0 ≥

∫

X

r(x0, a0)δx(dx0)π0(da0|x0)

+

∫

X

h∗(x1)δx(dx0)π0(da0|x0)Q(dx1|x0, a0).

That is
Eπ

xh
∗(x0) + ρ0 ≥ Eπ

xr(x0, a0) + Eπ
xh

∗(x1).

In general, a similar procedure for each n = 1, 2, · · ·, gives,

Eπ
xh

∗(xn−1) + ρ0 ≥ Eπ
x r(xn−1, an−1) + Eπ

xh
∗(xn).

Iterations of this inequality yield

Eπ
x

n−1∑

k=0

h∗(xk) + nρ0 ≥ Eπ
x

n−1∑

k=0

r(xk, ak) + Eπ
x

n∑

k=1

h∗(xk),

or, equivalently,

h∗(x) − Eπ
xh

∗(xn) + nρ0 ≥ Eπ
x

n−1∑

k=0

r(xk, ak).

Multiplying by 1/n both sides of the latter inequality , gives

1

n
h∗(x) − 1

n
Eπ

xh
∗(xn) + ρ0 ≥ 1

n
Eπ

x

n−1∑

k=0

r(xk, ak).

Therefore, as n→ ∞, (2.1.2) gives

ρ0 ≥ lim sup
n→∞

1

n
Eπ

x

n−1∑

k=0

r(xk, ak) ≥ lim inf
n→∞

1

n
Eπ

x

n−1∑

k=0

r(xk, ak).

Thus
ρ0 ≥ J̄(π, x) ≥ J(π, x)

for each x ∈ X and π ∈ Π.
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2.6 Proof of Theorem 2.4.3

We are ready for the proof of Theorem 2.4.3

Proof of Theorem 2.4.3 (i) By Lemma 2.5.1, T̂∗ is a mapping from BW (X)

into itself. We assert that T̂∗ is a contraction. To this end, let u be an
arbitrary function in BW (X) and define

Lu(x, a) := r(x, a) − ρ∗ +

∫

X

u(y)Q̂(dy|x, a) ∀(x, a) ∈ K.

If v ∈ BW (X) is another function, then

|Lu(x, a) − Lv(x, a)| ≤ ‖u− v‖W

∫

X

W (y)Q̂(dy|x, a)

≤ λ‖u− v‖WW (x)

This implies

T̂∗u(x) = sup
a∈A(x)

Lu(x, a) ≤ sup
a∈A(x)

Lv(x, a) + λ‖u− v‖WW (x);

hence
T̂∗u(x) ≤ T̂∗v(x) + λ‖u− v‖WW (x).

By symmetry
T̂∗v(x) ≤ T̂∗u(x) + λ‖u− v‖WW (x).

These two inequalities imply

|T̂∗u(x) − T̂∗v(x)| ≤ λ‖u− v‖WW (x);

therefore
‖T̂∗u− T̂∗v‖W ≤ λ‖u− v‖W ∀u, v ∈ BW (X). (2.6.1)

Thus, T̂∗ is a contraction on BW (X), and again by Banach’s fixed point

theorem there exists a unique h∗ ∈ BW (X) satisfying T̂∗h
∗ = h∗, that is

h∗(x) = sup
a∈A(x)

[
r(x, a) − ρ∗ +

∫

X

h∗(y)Q̂(dy|x, a)
]

∀x ∈ X.
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On the other hand, by Lemma 2.5.1 again, there exists a function f ∗ ∈ F

such that

h∗(x) = sup
a∈A(x)

[
r(x, a) − ρ∗ +

∫

X

h∗(y)Q̂(dy|x, a)
]

= rf∗(x) − ρ∗ +

∫

X

h∗(y)Q̂f∗(dy|x) ∀x ∈ X;

thus

h∗(x) = rf∗(x) − ρ∗ +

∫

X

h∗(y)Qf∗(dy|x) − ν(h∗)lf∗(x) ∀x ∈ X.

Integrating both sides of the latter relation with respect to the invariant prob-
ability measure µf∗ , we obtain ν(h∗)µf∗(lf∗) = ρf∗−ρ∗ ≤ 0. By Assumptions
2.1.1(a) and 2.1.2(c) note that

inf
ϕ∈Φ

µϕ(lϕ) ≥ (1 − λ)θ

ν(W )
> 0. (2.6.2)

Then ν(h∗) ≤ 0 because µf∗(lf∗) > 0. On the other hand, note that

h∗(x) ≥ r(x, a) − ρ∗ +

∫

X

h∗(y)Q̂(dy|x, a) ∀(x, a) ∈ K;

which in turn implies that

h∗(x) ≥ rϕ(x) − ρ∗ +

∫

X

h∗(y)Qϕ(dy|x) − ν(h∗)lϕ(x) ∀x ∈ X, ϕ ∈ Φ.

Integrating again but now with respect to µϕ we get

ν(h∗)µϕ(lϕ) ≥ ρϕ − ρ∗ ∀ϕ ∈ Φ;

by inequality (2.6.2) and the fact that ν(h∗) ≤ 0 we obtain

ν(h∗) ≥ (ρϕ − ρ∗)ν(W )

(1 − λ)θ
∀ϕ ∈ Φ

hence
ν(h∗)(1 − λ)θ/ν(W ) + ρ∗ ≥ sup

ϕ∈Φ
ρϕ = ρ∗.
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The latter inequality implies that ν(h∗) ≥ 0. It follows that ν(h∗) = 0, and
so the triplet (h∗, f ∗, ρ∗) satisfies (2.4.5).

(ii) Integrating both sides of the AROE (2.4.5) with respect to the i.p.m.
µf∗ , we can see that ρ∗ = ρf∗ .

By (2.2.13)

J(ϕ, x) = lim inf
n→∞

1

n
Eϕ

x

n−1∑

k=0

rϕ(xk) = µϕ(rϕ) = ρϕ ∀x ∈ X.

This fact and Lemma 2.5.2 yield

J(f ∗, x) = ρf∗ = ρ∗ ≥ J̄(π, x) ≥ J(π, x) ∀x ∈ X, π ∈ Π;

therefore, ρ∗ = supπ∈Π J(π, x) = J∗(x) is the optimal value and f ∗ is EAR-
optimal.

Remark 2.6.1 With the notation of Theorem 2.4.3, the function h∗ ∈ BW (X)
and the invariant measure µf∗ ∈ MW (X) have explicit forms (see (2.3.2)
and (2.2.19)). Indeed, because ν(h∗) = 0, Proposition 2.3.2 yields h∗ = hf∗.
Hence, by (2.3.2),

h∗(x) =
∞∑

n=0

∫

X

[rf∗(y) − ρ∗]Q̂n
f∗(dy|x) =

∫

X

[rf∗(y) − ρ∗]Pf∗(dy|x)

for all x in X, and

µf∗(·) =
1

ν(h1
f∗)

∞∑

n=0

∫

X

Q̂n
f∗(·|x)ν(dx) =

1

ν(h1
f∗)

∫

X

Pf∗(·|x)ν(dx)

with Pf∗ as in (2.2.7), with ϕ = f ∗.

Definition 2.6.2 A (randomized) stationary policy ϕ̃ ∈ Φ is called canonical
if there exists a constant ρ̃ and a measurable function h̃ ∈ BW (X) such that

ρ̃+ h̃(x) = sup
a∈A(x)

[
r(x, a) +

∫

X

h̃(y)Q(dy|x, a)
]

∀x ∈ X, (2.6.3)

and

ρ̃+ h̃(x) = rϕ̃(x) +

∫

X

h̃(y)Qϕ̃(dy|x) ∀x ∈ X. (2.6.4)
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If (2.6.3) and (2.6.4) are satisfied, then the triplet (ρ̃, h̃, ϕ̃) is called a canon-
ical triplet. Let Φcp be the class of canonical policies, and Φear the class of
(randomized) stationary EAR-optimal policies. We also define the sets of
deterministic policies Fcp = F ∩ Φcp and Fear = F ∩ Φear.

From Theorem 2.4.3, the classes Φcp and Φear are nonempty. Furthermore,
the triplet (h∗, f ∗, ρ∗) in Theorem 2.4.3 is canonical.

Proposition 2.6.3 Under the assumptions of Theorem 2.4.3

Φcp ⊂ Φear. (2.6.5)

Furthermore, if (ρ̃, h̃, ϕ̃) is a canonical triplet, then ρ̃ is the optimal value,
that is, ρ̃ = ρ∗.

Proof. Let (ρ̃, h̃, ϕ̃) a canonical triplet, so that the relationships (2.6.3) and
(2.6.4) hold. Integrating both sides of (2.6.4) with respect to µϕ̃ we obtain
ρ̃ = µϕ̃(rϕ̃) = ρϕ̃. On the other hand, by (2.6.4) and Lemma 2.5.2,

ρ̃ = ρϕ̃ ≥ J̄(π, x) ≥ J(π, x) ∀x ∈ X, π ∈ Π.

Thus
ρ∗ = ρ̃ = ρϕ̃ = J(ϕ̃, x) = J∗(x) ∀x ∈ X;

therefore, ϕ̃ is an EAR-optimal policy.
Concluding remarks. In this chapter we establish preliminary results

used troughout the rest of this work. We extend the results obtained by
Vega-Amaya [30] to the set of all randomized stationary policies Φ. Further-
more, we give explicit expressions for the invariant measures (see equation
(2.2.19)), and also for the functions h∗ϕ (see equation (2.3.2)) that solve the
P.E., and the functions h∗ that solve the AROE (2.4.5). This fact will be
particularly useful to prove boundedness conditions, which are necessary for
“nice” asymptotic results (law of large numbers, asymptotic normality) and
to prove compactness conditions.



Chapter 3

Pathwise Average Reward
Optimality

In this chapter we study pathwise average reward (PAR) optimality for the
general MCP introduced in Section 1.3. Our main objective is to show the ex-
istence of PAR-optimal policies under our assumptions introduced in Chapter
2. This problem is reduced to the context of Chapter 2 because in fact we
prove (in Theorem 3.3.2) that a stationary policy is PAR-optimal if and only
if it is EAR-optimal as in Definition 2.4.1. To this end we use the law of large
numbers for martingales, also known as the martingale stability theorem (see
Lemma 3.2.3 below).

As was already mentioned in Section 1.1, pathwise average optimality has
been studied under some hypotheses. For instance, Hernandez-Lerma et al.
[18] impose conditions ensuring w-geometric ergodicity. Here we follow the
fixed point approach initiated in Chapter 2.

This chapter is based on the works of Hernandez-Lerma et al. [15, Chap-
ter 11] and [18]. Similar results for continuous-time Markov chains can be
found in [24].

3.1 Definitions and a preliminary result

Definition 3.1.1 Let (X, A, {A(x) : x ∈ X}, Q, r) be a general MCM as in
Section 1.3, and let

Sn(π, x) :=
n−1∑

k=0

r(xk, ak) (3.1.1)

27
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be the pathwise n-stage total reward when using the control policy π ∈ Π,
given the initial state x ∈ X. We define the pathwise average reward:

S(π, x) := lim inf
n→∞

Sn(π, x)/n. (3.1.2)

Here we use the convention that the sequence {x0, a0, x1, a1, · · ·} in (3.1.1)
and (3.1.2) corresponds to the state-action process when using the policy π,
given the initial state x.

In the following proposition we show that if in (3.1.2) π is a stationary
policy ϕ ∈ Φ, then S(ϕ, ·) coincides with the expected average reward ρϕ =
µϕ(rϕ) defined in (2.1.3).

Proposition 3.1.2 Suppose that Assumptions 2.1.1 and 2.1.2 hold. Then
for each ϕ ∈ Φ and each initial state x ∈ X

S(ϕ, x) = lim
n→∞

1

n

n−1∑

k=0

rϕ(xk) = ρϕ Pϕ
x − a.s.

Proof. This result is a consequence of the strong law of large numbers for
Markov chains (see, for instance, [22, p. 411] or [15, Theorem 11.2.1(a)]).
Indeed, by Theorem 2.1.4 above, the Markov processes {xk} associated to
the kernel Qϕ(·|x) is positive Harris recurrent and the strong law of large
numbers holds:

lim
n→∞

1

n

n−1∑

k=0

rϕ(xk) = µϕ(rϕ) Pϕ
x − a.s.

since the function rϕ is µϕ-integrable. Thus, from (3.1.1) and (3.1.2), we
obtain the desired result.

3.2 Technical preliminaries

Let W be as in Assumption 2.1.1.

Assumption 3.2.1 There exists a positive constant K2 such that

r(x, a)2 ≤ K2W (x) ∀(x, a) ∈ K.
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Let us consider a randomized policy π ∈ Π, and h such that h2 ∈ BW (X);
equivalently, h ∈ Bw(X) where w(x) :=

√
W (x) for all x ∈ X. For k, n =

1, 2, · · · , let

Yk := h(xk) − Eπ
x [h(xk)|xk−1] = h(xk) − Eπ

x [h(xk)|hk−1] (3.2.1)

with hk−1 being the admissible history up to time k − 1, and

Mn :=
n∑

k=1

Yk, (3.2.2)

In particular, if π = ϕ ∈ Φ, then Yk is given by

Yk = h(xk) −
∫

X

h(y)Qϕ(dy|xk−1).

The next two lemmas are taken from the work of Hernandez-Lerma et al.
[18]:

Lemma 3.2.2 Suppose that Assumptions 2.1.1, 2.1.2 and 3.2.1 hold, and let
x0 = x be an (arbitrary) initial state. Then {Mn}n≥1 is a square integrable
P π

x -martingale with respect to the σ–algebra

Fn = σ{x0, a0, · · · , xn−1, an−1, xn} = σ{hn}.

Moreover,

(i) Eπ
x

∑∞
k=1 k

−2W (xk) <∞;

(ii)
∑∞

k=1 k
−2W (xk) <∞ P π

x − a.s.;

(iii) k−2W (xk) → 0 P π
x − a.s.;

(iv) k−1w(xk) → 0 P π
x − a.s., with w(·) =

√
W (·).

Proof. It suffices to prove (i):
Since |h(x)| ≤ ‖h‖w

√
W (x) for each x ∈ X, from (3.2.1) we obtain

|Yk| ≤ ‖h‖w{w(xk) + Eπ
x [w(xk)|xk−1]}.

Thus
Y 2

k ≤ 2‖h‖2
w{W (xk) + Eπ

x [W (xk)|xk−1]}, (3.2.3)
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and so Yk is square integrable with respect to the probability measure P π
x .

Hence, noting that Mn −Mn−1 = Yn,

Eπ
x [Mn −Mn−1|Fn−1] = Eπ

x [Yn|hn−1]

= Eπ
x [h(xn)|hn−1] − Eπ

x [h(xn)|hn−1] = 0,

i.e.,
Eπ

x [Mn|Fn−1] = Mn−1.

Then {Mn}n≥1 is a square integrable P π
x -martingale.

On the other hand, by Assumption 2.1.2(c) we can see that
∫

X

W (y)Q(dy|x, a) ≤ λW (x) + b ∀x ∈ X, (3.2.4)

where b is a constant. By an iteration procedure, we obtain

Eπ
xW (xk) ≤ λkW (x) + b

1 − λk

1 − λ
for k = 0, 1 · · ·,

which in turn gives (i).

Lemma 3.2.3 Under the assumptions of Lemma 3.2.2,

lim
n→∞

1

n
Mn = 0 P π

x − a.s.

Proof. Inequality (3.2.3) implies

Eπ
x [Y 2

k |Fk−1] ≤ 4||h||2wEπ
x [W (xk)|Fk−1]

because Eπ
x [W (xk)|xk−1] = Eπ

x [W (xk)|Fk−1]. By Assumption 2.1.1(a) and
(3.2.4), we obtain

Eπ
x [W (xk)|Fk−1] = Eπ

x [W (xk)|hk−1]

=

∫

X

∫

A

W (y)Q(dy|xk−1, a)πk−1(da|hk−1)

≤ (λ+
b

θ
)W (xk−1);

Therefore, by Lemma 3.2.2(ii)

∞∑

k=1

k−2Eπ
x [Y 2

k |Fk−1] ≤ 4||h||2w(λ+
b

θ
)
[
W (x0)+

∞∑

k=1

k−2W (xk)
]
<∞ P π

x −a.s.
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Finally, by the Martingale Stability Theorem (see, for instance, [15, p. 173],
we obtain

lim
n→∞

1

n
Mn = 0 P π

x − a.s.

Lemma 3.2.4 Suppose that Assumptions 2.1.1, 2.1.2 and 3.2.1 hold. Let
h∗ϕ be the function in Theorem 2.1.4(iii). Then h∗ϕ is a w-bounded function,

with w =
√
W .

Proof. Let Pϕ(dy|x) be the kernel on X defined in (2.2.7), and let Q̂ be as
in (2.2.1). By the Cauchy-Schwartz inequality,

∫

X

√
W (y)Q̂(dy|x, a) ≤

√∫

X

W (y)Q̂(dy|x, a)
√
Q̂(X|x, a)

≤
√
λ
√
W (x).

That is ∫

X

√
W (y)Q̂(dy|x, a) ≤ η

√
W (x) ∀(x, a) ∈ K,

where η :=
√
λ < 1. Thus

∫

X

√
W (y)Q̂n

ϕ(dy|x) ≤ ηn
√
W (x) ∀x ∈ X, n ∈ N, ϕ ∈ Φ.

This inequality implies that

∫

X

√
W (y)Pϕ(dy|x) ≤

√
W (x)

1 − η
∀x ∈ X. (3.2.5)

On the other hand, by Assumptions 2.1.1(b) and 3.2.1 it follows that
|rϕ(x)| ≤

√
K2W (x). By (2.2.16) and (2.2.17) we also have

|ρϕ| ≤ Kµϕ(W ) ≤ K3 :=
Kν(W )

(1 − λ)ν(X)
.

Consequently, from the explicit form (2.3.2) of the function h∗ϕ

|h∗ϕ(x)| ≤
∫

X

|rϕ(y) − ρϕ|Pϕ(dy|x)
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≤
∫

X

|rϕ(y)|Pϕ(dy|x) +
|ρϕ|√
θ

∫

X

√
W (y)Pϕ(dy|x)

≤ (
√
K2 +

|ρϕ|√
θ

)

∫

X

√
W (y)Pϕ(dy|x),

(3.2.6)

with θ as in Assumption 2.1.1(a).
Combining (3.2.5) and (3.2.6), we obtain

|h∗ϕ(x)| ≤ K4

√
W (x) ∀x ∈ X,

where

K4 :=
(
√
K2 + K3√

θ
)

1 − η

does not depend on ϕ. Thus (h∗ϕ)2 is in BW (X).
For future reference, we note the following.

Remark 3.2.5 We define, for each v ∈ Bw(X),

Rϕv(x) :=

∫

X

v(y)Qϕ(dy|x) ∀x ∈ X. (3.2.7)

We claim that Rϕv ∈ Bw(X). Indeed, (3.2.4) implies

∫

X

W (y)Q(dy|x, a) ≤ K ′2W (x) ∀(x, a) ∈ K,

with K ′2 := λ+ b/θ. Hence, by the Cauchy-Schwartz inequality

∫

X

√
W (y)Q(dy|x, a) ≤

√∫

X

W (y)Q(dy|x, a) ∀(x, a) ∈ K.

Therefore

∫

X

√
W (y)Q(dy|x, a) ≤ K ′

√
W (x) ∀(x, a) ∈ K. (3.2.8)

This inequality implies that Rϕv is in Bw(X) for each v ∈ Bw(X), with

w(·) =
√
W (·).
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Lemma 3.2.6 Let w(·) =
√
W (·). Suppose that Assumptions 2.1.1, 2.1.2

and 3.2.1 are satisfied. Given a randomized policy π ∈ Π, an initial state
x ∈ X and an arbitrary h ∈ Bw(X), we have

1

n

n−1∑

k=0

Lπh(xk) → 0 as n→ ∞ P π
x − a.s. (3.2.9)

with
Lπh(xk) := Eπ

x [h(xk+1)|hk] − h(xk),

where hk is the admissible history up to time k.
For a stationary policy π = ϕ ∈ Φ,

(Lϕh)(x) :=

∫

X

h(y)Qϕ(dy|x) − h(x) ∀x ∈ X.

Proof. Notice that

Mn = [h(xn) − h(x)] −
n−1∑

k=0

Lπ(xk), (3.2.10)

with Mn as in (3.2.2). From Lemma 3.2.2(iv) and Lemma 3.2.3 we have

1

n
h(xn) → 0 and

1

n
Mn → 0 P π

x − a.s.

as n→ ∞. These limits and (3.2.10) imply (3.2.9).

Lemma 3.2.7 Suppose that the hypotheses of Theorem 2.4.3 and Assump-
tion 3.2.1 are satisfied, and let (h∗, ϕ∗, ρ∗) ∈ BW (X) × Φ × R be a canonical
triplet, that is, a solution to the AROE (2.4.5). Then h∗(x) − h∗ϕ∗(x) = c
for all x ∈ X, where c is a constant that may depend on ϕ∗ and h∗ϕ∗, the
function in Theorem 2.1.4(iii) corresponding to the policy ϕ∗. Furthermore,
h∗ is w-bounded, with w =

√
W .

This result follows from Lemma 2.3.1 and Lemma 3.2.4.
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3.3 Pathwise average optimal policies

In this section we study a class of Markov control problems for which there
exists a pathwise average reward (PAR) optimal policy as defined below. The
main result in this section is Theorem 3.3.2 which together with Theorem
2.4.3 gives the existence of pathwise average optimal policies in F.

Definition 3.3.1 A randomized stationary policy ϕ∗ ∈ Φ is said to be path-
wise average reward optimal (PAR-optimal) if for each randomized policy
π ∈ Π and each x ∈ X,

S(π, x) ≤ ρϕ∗ P π
x − a.s.

with ρϕ∗ = µϕ∗(rϕ∗).

Theorem 3.3.2 Suppose that the hypotheses of Theorem 2.4.3 and Assump-
tion 3.2.1 are satisfied. Then a stationary policy is PAR-optimal if and only
if is expected average optimal.

Proof. As a consequence of Proposition 3.1.2 and Theorem 2.4.3, pathwise
average optimal policies are necessarily expected average optimal.

Conversely, let (ρ∗, h∗) ∈ R ×BW (X) be a solution of the AROE (2.4.5).
By Lemma 3.2.7, we have that h∗ is in Bw(X). Now, let ϕ∗ ∈ Φ be an
expected average optimal policy, that is, ρϕ∗ = ρ∗. From the AROE (2.4.5)

ρϕ∗ ≥ r(x, a) +

∫

X

h∗(y)Q(dy|x, a) − h∗(x) ∀(x, a) ∈ K.

Hence, for an arbitrary policy π ∈ Π and initial state x, we have

ρϕ∗ ≥ r(xk, ak) +

∫

X

h∗(y)Q(dy|xk, ak) − h∗(xk)

= r(xk, ak) + Eπ
x [h∗(xk+1)|hk, ak] − h∗(xk) P π

x − a.s.

for all k = 0, 1, · · ·. Taking conditional expectation with respect to hk,

ρϕ∗ ≥ Eπ
x [r(xk, ak)|hk] + Eπ

x [h∗(xk+1)|hk] − h∗(xk)

= Eπ
x [r(xk, ak)|hk] + Lπh∗(xk) P π

x − a.s.
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with Lπh∗(xk) defined as in Lemma 3.2.6. Hence

nρϕ∗ ≥ Sn(π, x) +
n−1∑

k=0

Lπh∗(xk) P π
x − a.s.

Finally, multiplying both sides of the latter inequality by 1/n and taking
lim sup as n→ ∞, and use Lemma 3.2.6 to obtain

ρϕ∗ ≥ lim sup
n→∞

1

n
Sn(π, x) ≥ S(π, x) P π

x − a.s.

for every policy π ∈ Π. Thus, ϕ∗ is sample-path average optimal.

Concluding remarks. In this chapter we have studied pathwise average
reward optimality. It is proved that under our fixed-point approach and un-
der a growth condition on the reward (Assumption 3.2.1), pathwise average
reward optimality and expected average optimality are equivalent. To this
end we verified that, under our hypotheses, we can use a law of large num-
bers for martingales, also known as the martingale stability theorem. These
techniques have been used in previous works like [18] assuming w-geometric
ergodicity.



Chapter 4

Variance minimization

In this chapter we study the existence of a stationary policy that minimizes
the limiting average variance in the class Fcp of deterministic canonical poli-
cies (recall Definition 2.6.2). Under our assumptions, we extend the results in
the works of Hernández-Lerma et al. [18] and [15, Chapter 11], which require
w-geometric ergodicity. Our procedure does not need w-geometric ergodic-
ity, and it is a consequence of our results in Chapters 2 and 3. Moreover, we
show that under an appropiate growth condition on the reward, the MCP
satisfies an asymptotic normality condition, which is very useful in adaptive
control problems.

4.1 Definitions

Definition 4.1.1 Let Jn(ϕ, x) and Sn(ϕ, x) be as in Definitions 2.4.1 and
3.1.1. For every ϕ ∈ Φ and initial state x we define the limiting average
variance

V (ϕ, x) := lim sup
n→∞

1

n
var[Sn(ϕ, x)] (4.1.1)

where (by definition of variance of a random variable)

var[Sn(ϕ, x)] = Eϕ
x [Sn(ϕ, x) − Jn(ϕ, x)]2.

We introduce some notation: in the remainder of this chapter we define
h1 := h∗, where h∗ as in (2.4.5). For each x ∈ X, let A∗(x) ⊂ A(x) be the
set of control actions that attain the maximun in (2.4.5), that is,

A∗(x) :=

{
a ∈ A(x) : ρ∗ + h1(x) = r(x, a) +

∫

X

h1(y)Q(dy|x, a)
}

(4.1.2)

36



CHAPTER 4. VARIANCE MINIMIZATION 37

Remark 4.1.2 Observe that by (2.6.4), a deterministic policy f ∈ F is
canonical if and only if f(x) ∈ A∗(x) for all x ∈ X.

Let

Λ(x, a) :=

∫

X

h1
2(y)Q(dy|x, a) −

[ ∫

X

h1(y)Q(dy|x, a)
]2

(4.1.3)

Under the assumptions of Lemma 3.2.7, the function Λ on K is well
defined.

4.2 Preliminary results

To state our variance-minimization result, we need the following lemmas.

Lemma 4.2.1 Under Assumptions 2.1.1, 2.1.2 and 2.4.2, let us consider h1

satisfying (2.4.5) in Theorem 2.4.3, ϕ an EAR-optimal policy, and h∗ϕ the
functions defined in Theorem 2.1.4-(iii). Then

(a) h∗ϕ(·) = h1(·) + cϕ µϕ − a.e. for some constant cϕ.

(b) There exists a canonical policy ϕ̂ ∈ Φcp such that (ρ∗, h1, ϕ̂) is a canonical
triplet, ϕ̂(·|x) = ϕ(·|x) µϕ − a.e., and µϕ̂ = µϕ. Moreover, h∗ϕ̂(x) =
h1(x) + cϕ̂ for all x ∈ X.

Proof. (a) From the AROE (2.4.5), we have

ρ∗ + h1(x) ≥ rϕ(x) +

∫

X

h1(y)Qϕ(dy|x) ∀x ∈ X. (4.2.1)

Since ϕ is EAR-optimal, we have ρϕ = µϕ(rϕ) = ρ∗. The corresponding
Poisson equation (2.1.4) is

ρ∗ + h∗ϕ(x) = rϕ(x) +

∫

X

h∗ϕ(y)Qϕ(dy|x) ∀x ∈ X. (4.2.2)

By (4.2.1) and (4.2.2), it follows that the function u(·) := h∗ϕ(·) − h1(·) in
BW (X) is subharmonic with respect to Qϕ, i.e.

∫

X

u(y)Qϕ(dy|x) ≥ u(x) ∀x ∈ X.
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By an iteration procedure, we get
∫

X

u(y)Qn
ϕ(dy|x) ≥ u(x) ∀x ∈ X, n = 0, 1, · · · .

From this inequality, we see that

1

n
Eϕ

x

n−1∑

k=0

u(xk) ≥ u(x) ∀n ∈ N,

and letting n→ ∞ we obtain
∫

X

u(y)µϕ(dy) = µϕ(u) ≥ u(x) ∀x ∈ X. (4.2.3)

So, u is bounded above. We define cϕ := supx∈X
u(x). By (4.2.3), we have

cϕ =
∫
X
u(y)µϕ(dy), which implies

u(·) = h∗ϕ(·) − h1(·) = cϕ µϕ − a.e.

That is,
h∗ϕ(·) = h1(·) + cϕ µϕ − a.e.,

with cϕ = supx∈X
u(x) =

∫
X
u(y)µϕ(dy).

(b) Notice that
∫

X

[
ρ∗ + h1(x) − rϕ(x) −

∫

X

h1(y)Qϕ(dy|x)
]
µϕ(dx) = 0,

because ϕ ∈ Φear, i.e., ρϕ = ρ∗. By Inequality (4.2.1) we have

ρ∗ + h1(x) = rϕ(x) +

∫

X

h1(y)Qϕ(dy|x) µϕ − a.e. (4.2.4)

Hence there exists a Borel set N ∈ B(X) such that µϕ(N) = 0 and

ρ∗ + h1(x) = rϕ(x) +

∫

X

h1(y)Qϕ(dy|x) ∀x ∈ N c := X \N (4.2.5)

On the other hand, we consider a canonical policy ϕ∗ ∈ Φcp such that
(ρ∗, h1, ϕ

∗) is a canonical triplet, and define the new policy

ϕ̂(·|x) = 1N(x)ϕ∗(·|x) + 1Nc(x)ϕ(·|x) ∀x ∈ X.
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Notice that

ϕ(·|x) = ϕ̂(·|x) and Qϕ(·|x) = Qϕ̂(·|x) µϕ − a.e. (4.2.6)

Moreover

ϕ(·|x) = ϕ̂(·|x) and Qϕ(·|x) = Qϕ̂(·|x) ∀x ∈ N c.

Hence, (4.2.6) implies
µϕ(·) = µϕ̂(·). (4.2.7)

Actually, we have that Qϕ(B|x) = Qϕ̂(B|x) µϕ − a.e., for all B in B(X).
Integrating both sides with respect to µϕ, we obtain

µϕ(B) =

∫

X

Qϕ̂(B|x)µϕ(dx).

So, µϕ is an invariant measure for Qϕ̂(B|x). By uniqueness of the i.p.m., we
obtain µϕ(·) = µϕ̂(·).

Next we show that (ρ∗, h1, ϕ̂) is a canonical triplet: Let x ∈ X be arbi-
trary.
(i) If x ∈ N , then ϕ̂(·|x) = ϕ∗(·|x). This implies

ρ∗ + h1(x) = sup
a∈A(x)

[
r(x, a) +

∫

X

h1(y)Q(dy|x, a)
]

= rϕ∗(x) +

∫

X

h1(y)Qϕ∗(dy|x)

= rϕ̂(x) +

∫

X

h1(y)Qϕ̂(dy|x).

(ii) If x ∈ N c, then ϕ̂(·|x) = ϕ(·|x). By (4.2.5)

ρ∗ + h1(x) = sup
a∈A(x)

[
r(x, a) +

∫

X

h1(y)Q(dy|x, a)
]

= rϕ(x) +

∫

X

h1(y)Qϕ(dy|x)

= rϕ̂(x) +

∫

X

h1(y)Qϕ̂(dy|x).

Combining (i) and (ii) we have that (ρ∗, h1, ϕ̂) is a canonical triplet and ϕ̂ is
a canonical policy such that ϕ̂(·|x) = ϕ(·|x) µϕ − a.e., and µϕ̂ = µϕ.

Finally, from Lemma 2.3.1, we obtain h∗ϕ̂(x) = h1(x) + cϕ̂ for all x ∈ X.
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Lemma 4.2.2 Suppose that Assumptions 2.1.1, 2.1.2, 2.4.2 and also 3.2.1
hold. Let ϕ ∈ Φ be arbitrary and let h∗ϕ be a function as in Theorem 2.1.4(iii).
We define the function

Ψϕ(x) :=

∫

X

h∗ϕ
2(y)Qϕ(dy|x) −

[ ∫

X

h∗ϕ(y)Qϕ(dy|x)
]2

∀x ∈ X. (4.2.8)

Then:

(a) The functions h∗ϕ
2, Ψϕ and h1

2 belong to BW (X), where h1 as in Theorem
2.4.3 satisfying the AROE (2.4.5);

(b) The limiting average variance satisfies

V (ϕ, x) = lim
n→∞

1

n
Eϕ

x

n−1∑

k=0

Ψϕ(xk) = σ2
ϕ ∀x ∈ X, (4.2.9)

where σ2
ϕ = µϕ(Ψϕ);

(c) For each ϕ EAR-optimal policy in Φear there exists a canonical policy
ϕ̂ ∈ Φcp such that Ψϕ̂ = Ψϕ µϕ − a.e.. Hence

V (ϕ̂, x) = V (ϕ, x) = σ2
ϕ ∀x ∈ X.

In particular, for each f stationary policy in Fear there exists a canon-
ical policy f̂ ∈ Fcp such that

V (f̂ , x) = V (f, x) = σ2
f ∀x ∈ X.

Proof. (a) This part follows from Lemma 3.2.4 and Lemma 3.2.7 above.
(b) This part is a consequence of [15, Theorem 11.2.4].
(c) From Lemma 4.2.1(b), for each ϕ in Φear there exists a canoni-

cal policy ϕ̂ in Φcp, such that (ρ∗, h1, ϕ̂) is a canonical triplet, ϕ̂(·|x) =
ϕ(·|x) µϕ − a.e., µϕ̂ = µϕ and h1(x) = h∗ϕ̂(x) + cϕ̂ for all x ∈ X. Hence

Ψϕ̂(x) =

∫

X

h1
2(y)Qϕ̂(dy|x) −

[ ∫

X

h1(y)Qϕ̂(dy|x)
]2

∀x ∈ X. (4.2.10)

Furthermore, by Lemma 4.2.1(a), there exist a subset N in B(X) such that
µϕ(N) = 0. Moreover
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(i) h∗ϕ(x) = h1(x) + cϕ ∀x /∈ N , where cϕ is a constant.

(ii) ϕ̂(·|x) = ϕ(·|x) ∀x /∈ N .

Notice that

0 = µϕ(N) =

∫

X

Qϕ(N |x)µϕ(dx).

Thus Qϕ(N |x) = 0 µϕ − a.e. Hence, there exists N ′ in B(X) such that
µϕ(N ′) = 0 and

Qϕ(N |x) = 0 ∀x ∈ N ′c. (4.2.11)

By (i) and (4.2.11), we have that
∫

X

h∗ϕ
2(y)Qϕ(dy|x) =

∫

N

h∗ϕ
2(y)Qϕ(dy|x) +

∫

Nc

h∗ϕ
2(y)Qϕ(dy|x)

=

∫

Nc

(h1(y) + cϕ)2Qϕ(dy|x)

=

∫

X

(h1(y) + cϕ)2Qϕ(dy|x) ∀x /∈ N ∪N ′.

Similarly
∫

X

h∗ϕ(y)Qϕ(dy|x) =

∫

X

(h1(y) + cϕ)Qϕ(dy|x) ∀x /∈ N ∪N ′.

Hence

Ψϕ(x) =

∫

X

h1
2(y)Qϕ(dy|x)−

[ ∫

X

h1(y)Qϕ(dy|x)
]2

∀x /∈ N∪N ′. (4.2.12)

By (ii) and (4.2.10), we have

Ψϕ̂(x) =

∫

X

h1
2(y)Qϕ(dy|x) −

[ ∫

X

h1(y)Qϕ(dy|x)
]2

∀x /∈ N. (4.2.13)

Comparing (4.2.12) and (4.2.13), we have that Ψϕ̂ = Ψϕ µϕ − a.e. Since
µϕ̂ = µϕ, then

σ2
ϕ̂ = µϕ̂(Ψϕ̂) = µϕ(Ψϕ) = σ2

ϕ.

So, from part (b) of this lemma we obtain

V (ϕ̂, x) = V (ϕ, x) ∀x ∈ X.



CHAPTER 4. VARIANCE MINIMIZATION 42

Remark 4.2.3 From the proof of Lemma 4.2.2(c) (see equation (4.2.12)),
we can see that if f ∈ Fear then

Ψf = Λf µf − a.e.

where Λ(x, a) as defined in (4.1.3). Consequently, by Lemma 4.2.2(b)

V (f, x) = σ2
f = µf (Ψf ) = µf (Λf ) ∀x ∈ X.

4.3 Main result

In this section we prove that, under the hypotheses of Theorem 3.3.2, there
exists a deterministic canonical policy f ∗ in Fcp such that

V (f ∗, x) = inf
f∈Fear

V (f, x) ∀x ∈ X. (4.3.1)

Theorem 4.3.1 Suppose that Assumptions 2.1.1, 2.1.2, 2.4.2 and also 3.2.1
hold. Then there exists a constant σ2

∗ ≥ 0, a deterministic canonical policy
f ∗ ∈ Fcp, and a function h2(·) in BW (X) such that, for each x ∈ X,

σ2
∗ + h2(x) = min

a∈A∗(x)

[
Λ(x, a) +

∫

X

h2(y)Q(dy|x, a)
]

= Λf∗(x) +

∫

X

h2(y)Qf∗(dy|x) (4.3.2)

Furthermore, f ∗ satisfies (4.3.1) and V (f ∗, ·) = σ2
∗; in fact

V (f ∗, x) = µf∗(Λf∗) = σ2
∗ ∀x ∈ X (4.3.3)

and
σ2
∗ ≤ V (f, x) ∀f ∈ Fear, x ∈ X. (4.3.4)

Proof. Let A∗(x) and Λ(x, a) be as in (4.1.2) and (4.1.3), respectively, and
consider the new Markov control model

(X, A, {A∗(x) : x ∈ X}, Q, Ĉ)

with Ĉ(x, a) := Λ(x, a). We can check that this control model satisfies the
assumptions of Theorem 2.4.3, i.e., Assumptions 2.1.1, 2.1.2 and 2.4.2. In
this case, J is replaced by

Ṽ (π, x) = lim sup
n→∞

1

n
Eπ

x

[ n−1∑

k=0

Λ(xk, ak)
]
.
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Note that
Ṽ (f, x) = µf (Λf ) for each f ∈ F. (4.3.5)

On the other hand, by Theorem 2.4.3, and by Remark 4.1.2, there exists a
triplet (h2, f

∗, σ2
∗) with h2 ∈ BW (X), f ∗ ∈ Fcp and σ2

∗ := inff∈F µf (Λf ), such
that

h2(x) = min
a∈A∗(x)

[
Λ(x, a) − σ2

∗ +

∫

X

h2(y)Q(dy|x, a)
]

= Λf∗ − σ2
∗ +

∫

X

h2(y)Qf∗(dy|x) ∀x ∈ X.

From this equation and by Remark 4.2.3

σ2
∗ = µf∗(Λf∗) = V (f ∗, x) ∀x ∈ X,

Moreover, by (4.3.5) and Remark 4.2.3 again

σ2
∗ ≤ Ṽ (f̂ , x) = µf̂ (Λf̂ ) = V (f̂ , x) ∀f̂ ∈ Fcp, x ∈ X.

By Lemma 4.2.2(c) we get that for each f ∈ Fear there exists f̂ ∈ Fcp such
that

V (f̂ , x) = V (f, x) = σ2
f ∀x ∈ X.

Hence
σ2
∗ ≤ σ2

f = µf (Λf ) = V (f, x) ∀f ∈ Fear, x ∈ X.

4.4 Asymptotic normality

In this section we study asymptotic normality of MCPs in Borel spaces with
unbounded rewards. In [21], Mandl study the asymptotic normality for finite
state MCPs. Following Mandl’s approach it is possible to prove asymptotic
normality for MCPs in Borel spaces.

We show that for every canonical policy f ∗ ∈ Fcp satisfying Theorem
4.3.1, the asymptotic distribution of (Sn(f ∗, x) − nρ∗)/√n for n → ∞ is
normal N(0, σ2

∗). To do this we introduce the next assumption

Assumption 4.4.1 There exists a positive constant K3 such that

|r(x, a)| ≤ K3
4

√
W (x) ∀(x, a) ∈ K.
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Remark 4.4.2 Assumption 4.4.1 implies Assumptions 2.1.1-(b) and 3.2.1

We shall begin with some preliminary results.

Lemma 4.4.3 Suppose that Assumptions 2.1.1, 2.1.2 and 4.4.1 hold. Let h∗ϕ
be the function in Theorem 2.1.4-(iii). Then h∗ϕ is a 4

√
W -bounded function.

Proof. The proof is similar to the proof of Lemma 3.2.4.
The next lemma follows from the Cauchy-Schwartz inequality.

Lemma 4.4.4 Let v ∈ B√
W (X) and define Rv as

Rv(x, a) :=

∫

X

v(y)Q(dy|x, a) ∀(x, a) ∈ K.

Then Rv is in B√
W (X). Moreover, if v ∈ B 4

√
W (X) then so is Rv.

Lemma 4.4.5 Suppose that the hypotheses of Theorem 2.4.3 and Assump-
tion 4.4.1 hold, and let h1 be a function satisfying the AROE (2.4.5). Then
h1 is in B 4

√
W (X)

Proof. This lemma is a direct consequence of Lemmas 2.3.1 and 4.4.3.

Lemma 4.4.6 Suppose that the hypotheses of Theorem 4.3.1 and Assump-
tion 4.4.1 hold. Then the functions Λ(·, ·) and h2 are

√
W -bounded.

Proof. By Lemma 4.4.6 the function h1 satisfying the AROE (2.4.5) is in
B 4

√
W (X). Then h2

1 is in B√
W (X). By Lemma 4.4.4 the functions

∫

X

h2
1(y)Q(dy|·, ·) and

∫

X

h1(y)Q(dy|·, ·)

are
√
W -bounded, hence

Λ(·, ·) =

∫

X

h2
1(y)Q(dy|·, ·) −

[ ∫

X

h1(y)Q(dy|·, ·)
]2

is
√
W -bounded.

Finally, by Lemma 4.2.2-(a) applied to the MCM

(X, A, {A∗(x) : x ∈ X}, Q, Ĉ)

we have that h2 is in B√
W (X).
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Theorem 4.4.7 Suppose that Assumptions 2.1.1, 2.1.2, 2.4.2 and 4.4.1 hold.
Let f ∗ ∈ Fcp be a canonical policy satisfying Theorem 4.3.1. Then for every
initial state x

Sn(f ∗, x) − nρ∗√
n

(4.4.1)

has asymptotically normal distribution N(0, σ2
∗) as n→ ∞.

Proof. We define

τ1(x, a) =

∫

X

h1(y)Q(dy|x, a) − h1(x) + r(x, a) − ρ∗

and

τ2(x, a) =

∫

X

h2(y)Q(dy|x, a) − h2(x) + Λ(x, a) − σ2
∗

for all (x, a) ∈ K. We also introduce

ψl(x, a) =

∫

X

hl(y)Q(dy|x, a) − hl(x) ∀x ∈ X, l = 1, 2,

χn(u) = exp{iu(Sn(f ∗, x) − nρ∗)} for n = 1, 2, · · · ;u ∈ R,

χ0(u) = 1,

e1(z) = exp{iz} − iz − 1,

e2(z) = exp{iz} +
z2

2
− iz − 1.

Observe that
τ1(x, a) = ψ1(x, a) + r(x, a) − ρ∗, (4.4.2)

and
τ2(x, a) = ψ2(x, a) + Λ(x, a) − σ2

∗ (4.4.3)

for all (x, a) ∈ K.
To prove the theorem we have to verify

lim
n→∞

Ef∗

x χn

( u√
n

)
= exp{−1

2
σ2
∗u

2}. (4.4.4)

Notice that ψl(xm, am) is the conditional expectation of hl(xm+1)−hl(xm)
given xm, am for l = 1, 2, that is,

ψl(xm, am) = Ef∗

x [hl(xm+1) − hl(xm)|xm, am].
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This yields, with χm := χm(u), the following equations

0 = iuEf∗

x

[ n−1∑

m=0

χmψ1(xm, am) −
n−1∑

m=0

χm

(
h1(xm+1) − h1(xm)

)]
(4.4.5)

and

0 =
u2

2
Ef∗

x

[ n−1∑

m=0

χm

(
h2(xm+1) − h2(xm)

)
−

n−1∑

m=0

χmψ2(xm, am)

]
. (4.4.6)

Furthermore, letting r := r(xm, am), e1 := e1

(
u(r − ρ∗)

)
and e2 :=

e2

(
u(r − ρ∗)

)
,

Ef∗

x χn − 1 = Ef∗

x

n−1∑

m=0

(χm+1 − χm)

= Ef∗

x

n−1∑

m=0

[
iu(r − ρ∗) − 1

2
u2(r − ρ∗)2 + e2

]
χm, (4.4.7)

−iuEf∗

x

n−1∑

m=0

χm

(
h1(xm+1) − h1(xm)

)
=

iuEf∗

x

[
h1(x0) − χnh1(xn) +

n−1∑

m=0

h1(xm+1)
(
χm+1 − χm

)]
=

iuEf∗

x

[
h1(x0) − χnh1(xn) +

n−1∑

m=0

h1(xm+1)
(
iu(r − ρ∗) + e1

)
χm

]
, (4.4.8)

u2

2
Ef∗

x

n−1∑

m=0

χm

(
h2(xm+1) − h2(xm)

)
=

−u
2

2
Ef∗

x

[
h2(x0)−χnh2(xn)+

n−1∑

m=0

h2(xm+1)
(

exp{iu(r−ρ∗)}−1
)
χm

]
. (4.4.9)
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Adding (4.4.5)-(4.4.9) and using (4.4.2)

Ef∗

x χn−1 =

iuEf∗

x

[
h1(x0) − χnh1(xn) +

n−1∑

m=0

χmτ1(xm, am) +
n−1∑

m=0

e1h1(xm+1)χm

]

−u
2

2
Ef∗

x

n−1∑

m=0

χm

{
ψ2(xm, am) + 2h1(xm+1)(r − ρ∗) + (r − ρ∗)2

}

−u
2

2
Ef∗

x

[
h2(x0) − χnh2(xn) +

n−1∑

m=0

h2(xm+1)
(

exp{iu(r − ρ∗)} − 1
)
χm

]

+Ef∗

x

n−1∑

m=0

e2χm.

Hence

Ef∗

x χn−1 =

κ′′(n, u)−u
2

2
Ef∗

x

n−1∑

m=0

χm

{
ψ2(xm, am)+2h1(xm+1)(r−ρ∗)+(r−ρ∗)2

}
(4.4.10)

with

κ′′(n, u) =

iuEf∗

x

[
h1(x0) − χnh1(xn) +

n−1∑

m=0

χmτ1(xm, am) +
n−1∑

m=0

e1h1(xm+1)χm

]

−u
2

2
Ef∗

x

[
h2(x0) − χnh2(xn) +

n−1∑

m=0

h2(xm+1)
(

exp{iu(r − ρ∗)} − 1
)
χm

]

+Ef∗

x

n−1∑

m=0

e2χm. (4.4.11)

Observing that

Λ(xm, am) = Ef∗

x [h2
1(xm+1)|xm, am] −

(
Ef∗

x [h1(xm+1)|xm, am]
)2
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and in view of (4.4.3), we can express (4.4.10) as

Ef∗

x χn−1 =

κ′′(n, u) − u2

2
Ef∗

x

n−1∑

m=0

χm

{
σ2
∗ + τ2(xm, am) − h2

1(xm+1)

+
(
Ef∗

x [h1(xm+1)|xm, am] + r(xm, am) − ρ∗
)2}

=

κ′′(n, u) − u2

2
Ef∗

x

n−1∑

m=0

χm

{
σ2
∗ + τ2(xm, am) − h2

1(xm+1)

+
(∫

X

h1(y)Q(dy|xm, am) + r(xm, am) − ρ∗
)2}

Since f ∗ is a canonical policy, from Remark 4.1.2 we have

Ef∗

x χn−1 =

κ′′(n, u) − u2

2
Ef∗

x

n−1∑

m=0

χm

{
σ2
∗ + τ2(xm, am) − h2

1(xm+1) + h2
1(xm)

}
=

= κ′′(n, u) − u2σ2
∗

2

n−1∑

m=0

Ef∗

x χm − u2

2
Ef∗

x

[
h2

1(x0) − χnh
2
1(xn)

+
n−1∑

m=0

χmτ2(xm, am) +
n−1∑

m=0

h2
1(xm+1)

(
exp{iu(r − ρ∗)} − 1

)
χm

]
.

Hence

Ef∗

x χn = 1 − u2σ2
∗

2

n−1∑

m=0

Ef∗

x χm + κ′(n, u) (4.4.12)

with

κ′(n, u) = κ′′(n, u) − u2

2
Ef∗

x

[
h2

1(x0) − χnh
2
1(xn) +

n−1∑

m=0

χmτ2(xm, am)

+
n−1∑

m=0

h2
1(xm+1)

(
exp{iu(r − ρ∗)} − 1

)
χm

]
. (4.4.13)
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Let us rewrite (4.4.12) as

Ef∗

x χn = 1 +
(

exp{−u
2σ2

∗
2

} − 1
) n−1∑

m=0

Ef∗

x χm + κ(n, u) (4.4.14)

with

κ(n, u) = κ′(n, u) +
[
1 − u2σ2

∗
2

− exp{−u
2σ2

∗
2

}
] n−1∑

m=0

Ef∗

x χm. (4.4.15)

From (4.4.14), an induction argument gives

Ef∗

x χn(u) = exp{−nσ
2
∗u

2

2
}+

[
exp{−σ

2
∗u

2

2
}−1

] n−1∑

m=0

exp
{
− σ2

∗u
2

2
(n−1−m)

}
κ(m,u)+κ(n, u). (4.4.16)

Observe that the proof of the limit (4.4.4) and consequently this theorem
follows from (4.4.16) if we show

max
1≤m≤n

|κ(m, u√
n

)| → 0 as n→ ∞. (4.4.17)

This relation is obtained by an inspection of the differents terms of κ(m,u/
√
n):

(i) Since f ∗ is a canonical policy satisfying Theorem 4.3.1, we have τ1(xm, am) =
0 for m = 0, 1, · · · in (4.4.11). Similarly, τ2(xm, am) = 0 in (4.4.13).

(ii) By (2.1.1) we have that

lim
n→∞

1√
n
Ef∗

x h(xn) = 0 and lim
n→∞

1

n
Ef∗

x h(xn) = 0

for every h in BW (X). This limit appears in (4.4.11) and (4.4.13) when we
replace u by u/

√
n.

(iii) In this part we prove the limit

lim
n→∞

1√
n
Ef∗

x

n−1∑

m=0

e1h1(xm+1)χm = 0;

see (4.4.11).
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From the fact |e1(z)| ≤ z2/2 for all z in R, we obtain

∣∣∣
1√
n
Ef∗

x

n−1∑

m=0

e1h1(xm+1)χm

∣∣∣ ≤ 1

2
√
n
Ef∗

x

n−1∑

m=0

u2

n
|h1(xm+1)|(r(xm, am) − ρ∗)2

=
u2

2n3/2
Ef∗

x

n−1∑

m=0

|
∫

X

h1(dy|xm, f
∗(xm))|(r(xm, f

∗(xm)) − ρ∗)2.

By Lemma 4.4.5, h1 is 4
√
W -bounded, in particular h1 is w-bounded. Hence,

by Lemma 4.4.4, the function
∫
X
h1(y)Q(dy|x, f ∗(x)) is w-bounded. On the

other hand, by Assumption 4.4.1 (r(x, f ∗(x))−ρ∗)2 is w-bounded. Therefore

∣∣∣
1√
n
Ef∗

x

n−1∑

m=0

e1h1(xm+1)χm

∣∣∣ ≤ C ′u2

2n3/2
Ef∗

x

n−1∑

m=0

W (xm)

where C ′ is a constant depending on h1 and r. By (2.1.1) we obtain

∣∣∣
1√
n
Ef∗

x

n−1∑

m=0

e1h1(xm+1)χm

∣∣∣ ≤ C ′u2

2n3/2
n
(
λW (x) +

ν(W )

(1 − λ)ν(X)

)
.

which converges to zero as n→ ∞.
(iv) We shall next prove

lim
n→∞

1

n
Ef∗

x

n−1∑

m=0

e2χm = 0.

This limit appears in (4.4.11) when we replace u by u/
√
n.

Notice that |e2(z)| ≤ |z|3/6 for all z in R. So, by Assumptions 2.1.1-(a)
and 4.4.1, together with (2.1.1),

∣∣∣
1

n
Ef∗

x

n−1∑

m=0

e2χm

∣∣∣ ≤ |u|3
6n5/2

Ef∗

x

n−1∑

m=0

|r(xm, f
∗(xm)) − ρ∗|3

≤ k′3|u|3
6n5/2

Ef∗

x

n−1∑

m=0

W (xm)3/4

≤ k3|u|3
6n5/2

Ef∗

x

n−1∑

m=0

W (xm)

≤ k3|u|3
6n3/2

(
λW (x) +

ν(W )

(1 − λ)ν(X)

)
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which converges to zero as n→ ∞, with k and k′ some constants.
(v) Let h be in Bw(X). Then

lim
n→∞

1

n
Ef∗

x

n−1∑

m=0

h(xm+1)
(

exp{i u√
n

(r − ρ∗)} − 1
)
χm = 0.

This limit appears in (4.4.11) and (4.4.13) when u is replaced by u/
√
n.

It follows from the relation e1(z) = exp{iz} − iz − 1 that

exp{i u√
n

(r − ρ∗)} − 1 = i
u√
n

(r − ρ∗) + e1

( u√
n

(r − ρ∗)
)
.

So

| 1
n
Ef∗

x

n−1∑

m=0

h(xm+1)
(

exp{i u√
n

(r − ρ∗)} − 1
)
χm| ≤

|u|
n3/2

Ef∗

x

n−1∑

m=0

|h(xm+1)||(r(xm, f
∗(xm)) − ρ∗)| + 1

n
Ef∗

x

n−1∑

m=0

|h(xm+1)||e1|.

This gives the desired conclusion by similar arguments to those in (iii).
(vi) The absolute value of the expression within brackets in (4.4.15) is

majorized by σ4
∗u

4/8, then the corresponding term in κ(n, u/
√
n) is majorized

by σ4
∗u

4/8n2.
The statements (i)-(vi) imply (4.4.17) and consequently prove the theorem.

Concluding remarks. Our motivation for this chapter was to ex-
tend, under our fixed-point approach, the results concerning the variance-
minimization problem studied by Hernández-Lerma, Vega-Amaya and Car-
rasco [18].

The minimization of variance is motivated by the fact that among the
optimal policies for which the control problem is solved, those with minimal
variance are preferable. This situation is verified because these policies imply
asymptotic normality. Furthermore, the examples in Chapter 6 show that our
assumptions to solve the variance-minimization problem are indeed verifiable.



Chapter 5

Constrained MCPs

The problem we are concerned with in this chapter is to maximize a long-run
sample-path (or pathwise) average reward for the given discrete-time MCM,
subject to constraints on a given finite number of long-run pathwise average
costs. To this end, we give conditions for the existence of optimal policies
for the problem with expected constraints (see Theorem 5.3.1). Moreover, in
Theorem 5.4.1 we can show that the expected case can be solved by means of
a parametric family of AROEs. Finally, we extend the results in the former
steps to our problem with pathwise constraints (see Theorem 5.5.2).

For finite state MCPs, we should mention the article by Haviv [12], and
the works by Ross and Varadarajan [26, 27]. For MCPs on Borel spaces
we only know the recent work by Vega-Amaya [31]. The article by Haviv
shows, by means of examples, that pathwise constraints are in general, more
“natural” than expected constraints and because MCPs with constraints on
the expected state-action frequencies can lead to optimal policies that do not
satisfy certain principles of optimality (as Bellman’s principle). In contrast,
the model with pathwise constraints leads to feasible optimal policies which
satisfy these principles.

The article by Vega-Amaya [31] shows, under appropiate assumptions
such as positive Harris recurrence, that there exists a randomized stationary
policy and an initial distribution that solve the constrained expected average
cost. Such a policy also minimizes the sample path average costs for every
initial distribution measure. These results are used to solve control problems
with constraints on the state occupation measures.

As can be seen in the paper by Prieto-Rumeau and Hernandez-Lerma [24],
previous attempts have been made to solve this problem for continuous-time

52
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denumerable-state controlled Markov chains. We extend the results obtained
in this work to the discrete-time MCM.

5.1 Expected constraints

Fix numbers θ1, · · · , θq in R, and measurable functions c1, · · · , cq in BW (K)
interpreted as cost-per-stage functions. Now, we are concerned with the
maximization, for every initial state x ∈ X, of

J(π, x) := lim inf
1

n
Eπ

x

n−1∑

k=0

r(xk, ak)

over the set of all control policies Π that satisfy the constraints

Ji(π, x) := lim sup
1

n
Eπ

x

n−1∑

k=0

ci(xk, ak) ≤ θi ∀i = 1, · · · , q.

In short, our problem is

maximize J(π, x)
(5.1.1)

subject to: π ∈ Π and Ji(π, x) ≤ θi ∀x ∈ X, i = 1, · · · , q. (5.1.2)

Observe that J(π, x) is defined as a “lim inf” whereas Ji(π, x) is a “lim
sup”. This is because the function r is interpreted as a reward-per-stage
function, and the functions ci as cost-per-stage functions.

Definition 5.1.1 A policy π ∈ Π is said to be feasible for the constrained
problem (CP) (5.1.1)-(5.1.2) if it satisfies the constraints in (5.1.2), that is,
Ji(π, x) ≤ θi for all x in X, i = 1, · · · , q. Moreover, a feasible policy π∗ is
called optimal for (5.1.1)-(5.1.2) if J(π, x) ≤ J(π∗, x) for every feasible π.

Let Φfeas be the class of feasible randomized stationary policies, i.e.,

Φfeas := {ϕ ∈ Φ : Ji(ϕ, x) ≤ θi ∀x ∈ X, i = 1, · · · , q}.

Henceforth V ∗(θ1, · · · , θq, x) will designate the optimal value function of
(5.1.1)-(5.1.2) on the set of randomized stationary policies Φ, that is,

V ∗(θ1, · · · , θq, x) := sup
ϕ∈Φfeas

J(ϕ, x), (5.1.3)
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for every x ∈ X. Moreover, under the assumptions of Theorem 2.4.3, for
i = 1, · · · , q, we can define

θi,min := min
ϕ∈Φ

∫

X

ciϕ(y)µϕ(dy) and θi,max := max
ϕ∈Φ

∫

X

ciϕ(y)µϕ(dy),

which are finite numbers. To avoid trivial situations, we will assume that the
constants θi in (5.1.2) verify that

θi,min < θi < θi,max ∀i = 1, · · · , q. (5.1.4)

Now let W be as in Assumption 2.1.1, and w :=
√
W . We denote by

Pw(K) the set of all Borel probability measure µ on K such that

∫

K

w(y)µ(d(y, a)) <∞.

Finally, for each ϕ ∈ Φ, we define µ̂ϕ ∈ Pw(K) as follows

µ̂ϕ(B × C) :=

∫

B

ϕ(C|x)µϕ(dx) ∀B ∈ B(X), C ∈ B(A); (5.1.5)

where µϕ is the unique invariant probability measure for the transition kernel
Qϕ(·|·). By (2.2.16) we can see that

∫

K

w(y)µ̂ϕ(d(y, a)) =

∫

X

w(y)µϕ(dy) <∞.

We denote by Γ the set of all these measures µ̂ϕ, i.e.,

Γ := {µ̂ϕ : ϕ ∈ Φ} ⊂ Pw(K). (5.1.6)

Let Bb(X) be the set of bounded measurable functions on X. We shall
denote by R the operator defined for each v in Bb(X) as

(Rv)(x, a) :=

∫

X

v(y)Q(dy|x, a) − v(x) ∀(x, a) ∈ K. (5.1.7)

Following [22], we will refer to R as a drift operator.
The study of the general properties of the measures in Γ is based on the

following Lemma 5.1.2:
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Lemma 5.1.2 Consider a probability measure µ̂ in Pw(K). A necessary and
sufficient condition for µ̂ to be in Γ is that

∫

K

Rv dµ̂ = 0 for every v ∈ Bb(X). (5.1.8)

Proof. (Necessity.) Fix µ̂ ∈ Γ and v ∈ Bb(X). By (5.1.6), there exist ϕ ∈ Φ
such that µ̂ = µ̂ϕ. We have

∫

K

Rv dµ̂ =

∫

X

[ ∫

A

(Rv)(x, a)ϕ(da|x)
]
µϕ(dx)

=

∫

X

[ ∫

X

v(y)Qϕ(dy|x) − v(x)

]
µϕ(dx) (5.1.9)

Since µϕ is an invariant probability measure for the transition kernel Qϕ(·|·),
we obtain ∫

X

[ ∫

X

v(y)Qϕ(dy|x) − v(x)

]
µϕ(dx) = 0

which proves (5.1.8).
(Sufficiency.) Suppose now that (5.1.8) holds for some µ̂ ∈ Pw(K).

Therefore, by a standard result on the disintegration of measures [14, Propo-
sition D.8], there exists ϕ ∈ Φ such that µ̂ can be “disintegrated” as

µ̂(B × C) =

∫

B

ϕ(C|x)µ̃(dx) ∀B ∈ B(X), C ∈ B(A), (5.1.10)

where µ̃(B) := µ̂(B × A) for all B ∈ B(X) is the marginal (or projection) of
µ̂ on X. Letting v(·) = 1B(·), with B in B(X) and by a similar procedure as
in (5.1.9), we obtain

0 =

∫

K

Rv dµ̂

=

∫

X

[ ∫

X

v(y)Qϕ(dy|x) − v(x)

]
µ̃(dx)

=

∫

X

[
Qϕ(B|x) − 1B(x)

]
µ̃(dx),

i.e.,
∫
X
Qϕ(B|x)µ̃(dx) = µ̃(B) for every B ∈ B(X). Thus µ̃ is an invariant

probability measure for the kernel Qϕ(·|·). By uniqueness of the i.p.m. (see
Theorem 2.1.4(i)), µ̃ = µϕ and hence, µ̂ = µ̂ϕ as we wanted to prove.
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5.2 Technical preliminaries

Assumption 5.2.1 (a) Q(·|·, ·) is strongly continuous on K, that is, the
mapping

(x, a) 7→
∫

X

v(y)Q(dy|x, a)

is continuous on K for every measurable bounded function v on X.

(b) The cost functions ci(·, ·) ∈ BW (K) are nonnegative (or bounded below)
and lower semicontinuous (l.s.c.).

(c) r(·, ·) is u.s.c. on K.

(d) Let W be as in Assumption 2.1.1. The function w =
√
W , seen as a

function (x, a) 7→ w(x) on K, is continuous. Moreover, w is a moment
function on K, that is, there exists a nondecreasing sequence of compact
sets Kn ↑ K such that

lim
n→∞

inf{w(x) : (x, a) /∈ Kn} = ∞.

(e) The state space X and the control set A are separable and metrizable
spaces. In particular, the set K of feasible state-actions pairs, is sepa-
rable and metrizable.

Notice that Assumption 5.2.1(a) implies Assumption 2.4.2(c), and As-
sumption 5.2.1(c) implies Assumption 2.4.2(b).

Under Assumptions 5.2.1(d)-(e), throughout the remainder of this chap-
ter, we consider the w-weak topology on Pw(K), i.e., the smallest topology
for which the mapping

µ̂ 7→
∫

K

vdµ̂

on Pw(K) is continuous for every v ∈ Cw(K), where Cw(K) is the linear
subspace of Bw(K) that consists of the continuous functions on K.

Lemma 5.2.2 Under Assumptions 2.1.1-(a), 2.1.2, 5.2.1-(a) and 5.2.1-(d),
the set Γ is convex and compact in the w-weak topology. Let θ1, · · · , θq be as
in (5.1.4). Then the set

I := {µ̂ ∈ Γ :

∫

K

cidµ̂ ≤ θi for i = 1, · · · , q} ⊂ Pw(K) (5.2.1)
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is a convex and closed (with respect to the w-weak topology) subset of Γ. In
particular, I is compact.

Proof. The convexity property follows directly from Lemma 5.1.2, because
any convex combination of measures in Γ lies in Γ.

To prove that Γ is compact we will first show that Γ is closed in the
w-weak topology. Let us consider a sequence {µ̂ϕn

} in Γ that converges to
µ̂ ∈ Pw(K) in the w-weak topology. We need to show that µ̂ ∈ Γ. From
Lemma 5.1.2 we have

∫

K

Rv dµ̂ϕn
= 0 for every v ∈ Bb(X), n ∈ N.

Moreover, by the Assumption 5.2.1(a), if v is a continuous bounded function
on X, then (x, a) 7→ (Rv)(x, a) =

∫
X
v(y)Q(dy|x, a) − v(x) is a continuous

bounded function on K. This implies
∫

K

Rv dµ̂ = 0 ∀v ∈ Cb(X),

where Cb(X) is the linear space of all bounded continuous functions on X.
On the other hand, by the argument leading to (5.1.10), there exists ϕ ∈ Φ
such that

µ̂(B × C) =

∫

B

ϕ(C|x)µ̃(dx) ∀B ∈ B(X), C ∈ B(A),

where µ̃ is the marginal of µ̂ on X. Combining these facts, we have

0 =

∫

K

Rv dµ̂ (5.2.2)

=

∫

X

[ ∫

X

v(y)Qϕ(dy|x) − v(x)

]
µ̃(dx) ∀v ∈ Cb(X).

Now consider an arbitrary closed subset F of the metric space X. Then
there exists a sequence {vn} of continuous bounded functions on X such that
0 ≤ vn ≤ 1 and

lim
n→∞

vn(x) = 1F (x) ∀x ∈ X.

Taking v = vn in (5.2.2) and using Lebesgue’s dominated convergence theo-
rem we obtain ∫

X

[
Qϕ(F |x) − 1F (x)

]
µ̃(dx) = 0.
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Equivalently,

µ̃(F ) =

∫

X

Qϕ(F |x)µ̃(dx) for every closed subset F ⊂ X,

and

µ̃(G) =

∫

X

Qϕ(G|x)µ̃(dx) for every open subset G ⊂ X.

Because every finite Borel measure on the metric space X is regular (see,
for instance, [5, Theorem 7.1.3]), for each B ∈ B(X) and for any closed subset
F ⊂ B, and for any open subset G such that B ⊂ G:

µ̃(F ) =

∫

X

Qϕ(F |x)µ̃(dx) ≤
∫

X

Qϕ(B|x)µ̃(dx) ≤
∫

X

Qϕ(G|x)µ̃(dx) = µ̃(G).

This yields, by the regularity of µ̃,

µ̃(B) = sup
F⊂B closed

µ̃(F ) ≤
∫

X

Qϕ(B|x)µ̃(dx) ≤ inf
B⊂G open

µ̃(G) = µ̃(B);

hence

µ̃(B) =

∫

X

Qϕ(B|x)µ̃(dx) for every Borel subset B ⊂ X.

Thus µ̃ is the unique invariant probability measure for Qϕ(·|·), i.e., µ̃ = µϕ

and so µ̂ = µ̂ϕ in Γ. In conclusion, Γ is closed.
To prove compactness, it suffices to show that Γ is relatively compact

in the w-weak topology. By (2.2.16) and the fact w(x) ≤ W (x)/
√
θ for all

x ∈ X, we have

sup
µ̂∈Γ

∫

K

wdµ̂ = sup
ϕ∈Φ

∫

X

wdµϕ ≤ ν(W )

(ν(X) ·
√
θ)(1 − λ)

<∞. (5.2.3)

On the other hand, from Assumption 5.2.1(d), there exists a nondecreasing
sequence of compact sets Kn ↑ K such that

lim
n→∞

inf{w(x) : (x, a) /∈ Kn} = ∞.

Define wn := inf{w(x) : (x, a) /∈ Kn}, then by (2.2.16) again

wn

∫

Kc
n

wdµ̂ϕ ≤
∫

K

w2dµ̂ϕ =

∫

X

Wdµϕ

≤ ν(W )

ν(X)(1 − λ)
, for all ϕ ∈ Φ.
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This inequality implies that for each ε > 0 there exists a compact subset K
of K such that

sup
µ̂∈Γ

∫

Kc

wdµ̂ ≤ ε. (5.2.4)

By (5.2.3), (5.2.4), and Prohorov’s theorem (see, for instance, [8, Appendix
A.5]), we conclude that Γ is relatively compact in the w-weak topology.
Therefore, since in addition Γ is closed, it is compact.

It only remains to prove the compactness of I. Actually, we only have
to prove that I is sequentially closed. Let {µ̂ϕn

} be a sequence in I that
converges to a measure µ̂ ∈ Pw(K) with respect to the w-weak topology. By
the arguments above,we know that µ̂ is in Γ. Because Cb(K) ⊂ Cw(K), we
also have that {µ̂ϕn

} converges weakly to µ̂. Therefore, since ci, i = 1, · · · , q,
is bounded below and l.s.c. (see [14, Appendix E.2])

∫

K

cidµ̂ ≤ lim inf
n→∞

∫

K

cidµ̂ϕn
≤ θi for i = 1, · · · , q.

Thus µ̂ is in I, and so I is a compact set in Pw(K) provided with the w-weak
topology.

Notation. Let θ := (θ1, · · · , θq), θmin := (θ1,min, · · · , θq,min), and θmax :=
(θ1,max, · · · , θq,max). We define

[θmin, θmax] := [θ1,min, θ1,max] × · · · × [θq,min, θq,max] ⊂ R
q.

Moreover, if θ, θ′ ∈ R
q, then θ ≤ θ′ means that

θi ≤ θ′i ∀i = 1, · · · , q,
and θ << θ′ means

θi < θ′i ∀i = 1, · · · , q.
Recall that a real-valued function V on R

q is nondecreasing if:

∀θ, θ′ ∈ R
q such that θ ≤ θ′, we have V (θ) ≤ V (θ′).

MCPs with expected constraints. Our next result is a direct conse-
quence of the convexity of Γ (Lemma 5.2.2), and it is stated without proof.

Lemma 5.2.3 The function

θ 7→ V (θ) := sup
{∫

K

rdµ̂ : µ̂ ∈ Γ,

∫

K

cidµ̂ ≤ θi, for i = 1, · · · , q
}

(5.2.5)

is concave and nondecreasing on [θmin, θmax] ⊂ R
q.
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Remark 5.2.4 Note that for each ϕ ∈ Φ

J(ϕ, x) = lim
n→∞

1

n
Eϕ

x

n−1∑

k=0

rϕ(xk) =

∫

X

rϕdµϕ =

∫

K

rdµ̂ϕ,

Ji(ϕ, x) = lim
n→∞

1

n
Eϕ

x

n−1∑

k=0

ciϕ(xk) =

∫

X

ciϕdµϕ =

∫

K

cidµ̂ϕ,

for i = 1, · · · , q and all x ∈ X. Comparing (5.2.5) and (5.1.3) above, we
have

V (θ) = V ∗(θ, x) ∀x ∈ X, (5.2.6)

for all θmin << θ << θmax.

Lemma 5.2.5 Under Assumptions 2.1.1, 2.1.2, 3.2.1 and 5.2.1, the map-
ping

µ̂ 7→
∫

K

rdµ̂ ∈ R

on Pw(K) is u.s.c. on Pw(K) with respect to the w-weak topology.

Proof. First, we prove that if g : K → R is bounded below and l.s.c., then
the mapping

G : µ̂ 7→
∫

K

g dµ̂

is l.s.c. on Pw(K). Indeed, without loss of generality, suppose that g is a
nonnegative l.s.c. function. Let {µ̂n} and µ̂ probability measures in Pw(K)
such that {µ̂n} converges w-weakly to µ̂. Because Cb(K) ⊂ Cw(K), then
{µ̂n} converges weakly to µ̂. From a well-known result (see [14, Appendix
E.2]), we obtain

lim inf
n→∞

∫

K

g dµ̂n ≥
∫

K

g dµ̂.

That is
lim inf
n→∞

G(µ̂n) ≥ G(µ̂).

This means that the mapping G is l.s.c. with respect to the w-weak topology
on Pw(K).
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On the other hand, by the Assumptions 3.2.1 and 5.2.1, the function
g(x, a) := K ′

2w(x)− r(x, a) is a nonnegative l.s.c. function on K, with K ′
2 :=√

K2. From the previous paragraph, the mapping

µ̂ 7→
∫

K

(K ′
2w − r)dµ̂ = K ′

2

∫

K

wdµ̂−
∫

K

rdµ̂

is l.s.c. and finite-valued on Pw(K). Since w ∈ Cw(K), the mapping

µ̂ 7→ −K ′
2

∫

K

wdµ̂

on Pw(K) is l.s.c. Because the addition of two l.s.c. functions is also l.s.c.,
we obtain that the mapping

µ̂ 7→ −
∫

K

rdµ̂

on Pw(K) is l.s.c., and therefore

µ̂ 7→
∫

K

rdµ̂

is u.s.c. on Pw(K).

5.3 Optimal policies

The following theorem states the existence of an optimal policy for the con-
strained problem (5.1.1)-(5.1.2). Furthermore, it establishes the existence of
a solution to the average reward optimality equation (AROE) (5.3.2).

Optimal policies for the CP (5.1.1)-(5.1.2) satisfying the AROE (5.3.1),
are called constrained canonical policies (ccp).

Theorem 5.3.1 Suppose that Assumptions 2.1.1, 2.1.2, 2.4.2, 3.2.1 and
5.2.1 are satisfied. Let θ0 = (θ1, · · · , θq) be such that θmin << θ0 << θmax.
Then:

(i) The value function V ∗(θ0, x) does not depend on x ∈ X and V (θ0) =
V ∗(θ0) ≡ V ∗(θ0, x), with V (θ0) as in (5.2.5).
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(ii) There exist Λ0 = (λ01, · · · , λ0q) ≤ 0 and h ∈ BW (X) such that the AROE

V ∗(θ0) + h(x) = sup
a∈A(x)

[
r(x, a) +

q∑

i=1

λ0i

(
ci(x, a) − θi

)

+

∫

X

h(y)Q(dy|x, a)
]

(5.3.1)

holds for every x ∈ X. If in addition, ci is in Bw(X) for i = 1, · · · , q, then
the function h belongs to Bw(X).

(iii) There exists an optimal randomized stationary policy ϕ∗ ∈ Φ for the
constrained problem (5.1.1)-(5.1.2) that attains the maximum in the right-
side of (5.3.1), i.e.,

V ∗(θ0) + h(x) = rϕ∗(x) +

q∑

i=1

λ0i

(
ciϕ∗(x) − θi

)
+

∫

X

h(y)Qϕ∗(dy|x) (5.3.2)

for all x ∈ X. Moreover, if

θ := (

∫

K

c1dµ̂ϕ∗ , · · · ,
∫

K

cqdµ̂ϕ∗) = (J1(ϕ
∗, x), · · · , Jq(ϕ

∗, x)),

the following “orthogonality” property is satisfied

(θ − θ0) · Λ0 = 0; (5.3.3)

where “ · ” denotes the usual scalar product in R
q.

Proof. Proof of (i). This part follows from Remark 5.2.4.
Proof of (ii). By Lemma 5.2.3, the function V , defined on the q-dimensional

closed bounded interval [θmin, θmax], is concave and nondecreasing. Note that
for every µ̂ ∈ Γ and if we define

θ := (

∫

K

c1dµ̂, · · · ,
∫

K

cqdµ̂) ≡
∫

K

~cdµ̂ and ζ :=

∫

K

rdµ̂,

then the point (θ, ζ) belongs to the hypograph of V .
Let Λ0 := (λ01, · · · , λ0q) with Λ0 ≤ 0, be a vector in ∈ R

q such that −Λ0

is a superdifferential of V at θ0 (see, for instance, [6, Chapter 1]). Then

ζ + (θ − θ0) · Λ0 ≤ V (θ) + (θ − θ0) · Λ0 ≤ V (θ0)



CHAPTER 5. CONSTRAINED MCPS 63

In particular, letting ~c := (c1, · · · , cq),
∫

K

(
r + (~c− θ0) · Λ0

)
dµ̂ ≤ V (θ0) ∀µ̂ ∈ Γ.

Thus

sup
µ̂∈Γ

∫

K

(
r + (~c− θ0) · Λ0

)
dµ̂ ≤ V (θ0).

By the definition(5.2.1) of I and the fact that
∫

K
[(~c− θ0) · Λ0]dµ̂ ≥ 0 for all

µ̂ ∈ I, we obtain

V (θ0) = sup
µ̂∈I

∫

K

rdµ̂ ≤ sup
µ̂∈Γ

∫

K

(
r + (~c− θ0) · Λ0

)
dµ̂ ≤ V (θ0).

Hence

V (θ0) = sup
µ̂∈Γ

∫

K

(
r + (~c− θ0) · Λ0

)
dµ̂. (5.3.4)

The expression (5.3.4) tells us that V (θ0) is the optimal value of an expected
average reward MCP with reward-per-stage function in BW (K) given by

r + (~c− θ0) · Λ0,

and which satisfies the assumptions of Theorem 2.4.3. Hence, there exists a
function h ∈ BW (X) such that (V (θ0), h) is a solution of the corresponding
AROE, i.e.,

h(x) + V (θ0) =

sup
a∈A(x)

[
r(x, a) +

q∑

i=1

λ0i

(
ci(x, a) − θi

)
+

∫

X

h(y)Q(dy|x, a)
]

(5.3.5)

for every x ∈ X.
If in addition ci ∈ Bw(X) for i = 1, · · · , q, from Lemma 4.2.2, we have

that h ∈ Bw(X). This completes the proof of statement (ii).
Proof of (iii). We know from part (ii) and from Theorem 2.4.3 that there

exists a stationary deterministic policy f ∈ F such that

h(x) + V (θ0) = sup
a∈A(x)

[
r(x, a) +

q∑

i=1

λ0i

(
ci(x, a) − θi

)
+

∫

X

h(y)Q(dy|x, a)
]

= rf (x) +

q∑

i=1

λ0i

(
cif (x) − θi

)
+

∫

X

h(y)Qf (dy|x) ∀x ∈ X.

(5.3.6)
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On the other hand, note that

V (θ0) = sup
µ̂∈I

∫

K

rdµ̂.

Because the mapping µ̂ 7→
∫

K
rdµ̂ is u.s.c. on Pw(K) with respect to the

w-weak topology (Lemma 5.2.5), the maximum is attained on the compact
set I (Lemma 5.2.2). Thus, there exists ϕ ∈ Φ such that

∫

K

cidµ̂ϕ ≤ θi ∀i = 1, · · · , q, and V (θ0) =

∫

K

rdµ̂ϕ. (5.3.7)

We claim that ϕ is an optimal policy for the constrained problem (5.1.1)-
(5.1.2) with V (θ0) as its optimal value. To do this we will prove that for
every feasible policy π ∈ Π for the constrained problem (5.1.1)-(5.1.2) we
have

V (θ0) ≥ J̄(π, x) ≥ J(π, x). (5.3.8)

From the AROE (5.3.5), we have

h(x) + V (θ0) −
q∑

i=1

λ0i

(
ci(x, a) − θi

)
≥ r(x, a) +

∫

X

h(y)Q(dy|x, a),

for every feasible action-pair (x, a) ∈ K. Iteration of this inequality (as in
the proof of Lemma 2.5.2) yields

Eπ
x

n−1∑

k=0

h(xk) + nV (θ0) −
q∑

i=1

λ0i

(
Eπ

x

n−1∑

k=0

ci(xk, ak) − nθi

)

≥ Eπ
x

n−1∑

k=0

r(xk, ak) + Eπ
x

n∑

k=1

h(xk),

or equivalently

1

n
h(x) − 1

n
Eπ

xh(xn) + V (θ0) −
q∑

i=1

λ0i

( 1

n
Eπ

x

n−1∑

k=0

ci(xk, ak) − θi

)

≥ 1

n
Eπ

x

n−1∑

k=0

r(xk, ak).
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By (2.1.2) in Remark 2.1.3, and the fact that λ0i ≤ 0 for i = 1, · · · , q, taking
the lim sup in both sides of the latter inequality, we have

V (θ0) −
q∑

i=1

λ0i

(
Ji(π, x) − θi

)
≥ J̄(π, x),

that is

V (θ0) ≥ J̄(π, x) +

q∑

i=1

λ0i

(
Ji(π, x) − θi

)
. (5.3.9)

Since π ∈ Π is a feasible policy for the constrained problem (5.1.1)-(5.1.2),
then

q∑

i=1

λ0i

(
Ji(π, x) − θi

)
≥ 0,

because λ0i ≤ 0. Thus (5.3.9) gives (5.3.8).
It follows that the randomized stationary policy ϕ satisfying (5.3.7) is an

optimal policy for the constrained problem (5.1.1)-(5.1.2) with V (θ0) as its
optimal value.

On the other hand, observe that

∫

K

[(~c− θ0) · Λ0]dµ̂ϕ =

∫

K

[ q∑

i=1

λ0i

(
ci(x, a) − θi

)]
µ̂ϕ(d(x, a)) = 0. (5.3.10)

By the definition of h ∈ BW (X) in (5.3.5), we get:

h(x) + V (θ0) ≥ rϕ(x) +

q∑

i=1

λ0i

(
ciϕ(x) − θi

)
+

∫

X

h(y)Qϕ(dy|x), (5.3.11)

for all x in X. From (5.3.10),

∫

X

[
h(x) + V (θ0) − rϕ(x) −

q∑

i=1

λ0i

(
ciϕ(x) − θi

)
−

∫

X

h(y)Qϕ(dy|x)
]
µϕ(dx)

= −
∫

K

[ q∑

i=1

λ0i

(
ci(x, a) − θi

)]
µ̂ϕ(d(x, a))

= 0.
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By (5.3.11) there exists a Borel subset N ∈ B(X) such that µϕ(N) = 0 and

h(x) + V (θ0) = rϕ(x) +

q∑

i=1

λ0i

(
ciϕ(x) − θi

)
+

∫

X

h(y)Qϕ(dy|x) (5.3.12)

for all x ∈ N c = X \N . We define the new policy

ϕ∗(·|x) := 1N(x)δf(x)(·) + 1Nc(x)ϕ(·|x) ∀x ∈ X, (5.3.13)

where δf(x)(·) is the Dirac measure concentrated at f(x). It follows that
ϕ∗(·|x) = ϕ(·|x) µϕ − a.e. Notice that

ϕ∗(·|x) = ϕ(·|x) and Qϕ∗(·|x) = Qϕ(·|x) ∀x ∈ X \N. (5.3.14)

Therefore
µϕ∗ = µϕ. (5.3.15)

In fact, if u(·) is a bounded measurable function on K, then uϕ∗(x) = uϕ(x)
for all x ∈ X \N . Consequently, we have

∫

K

u dµ̂ϕ∗ =

∫

X

uϕ∗ dµϕ∗ =

∫

X

uϕ dµϕ =

∫

K

u dµ̂ϕ ∀u ∈ B1(K).

Thus
µ̂ϕ∗ = µ̂ϕ. (5.3.16)

This equality of measures, gives us that ϕ∗ ∈ Φ as defined in (5.3.13) is
an optimal policy for the constrained problem (5.1.1)-(5.1.2). Moreover, by
(5.3.10) and (5.3.16), ϕ∗ satisfies

∫

K

[(~c− θ0) · Λ0]dµ̂ϕ∗ = 0.

Finally, we need to prove that

h(x) + V (θ0) = sup
a∈A(x)

[
r(x, a) +

q∑

i=1

λ0i

(
ci(x, a) − θi

)
+

∫

X

h(y)Q(dy|x, a)
]

= rϕ∗(x) +

q∑

i=1

λ0i

(
ciϕ∗(x) − θi

)
+

∫

X

h(y)Qϕ∗(dy|x)

(5.3.17)
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for all x ∈ X. Let us take x ∈ X. If x ∈ N , we have ϕ∗(·|x) = δf(x)(·). By
(5.3.6),

h(x) + V (θ0) = rf (x) +

q∑

i=1

λ0i

(
cif (x) − θi

)
+

∫

X

h(y)Qf (dy|x)

= rϕ∗(x) +

q∑

i=1

λ0i

(
ciϕ∗(x) − θi

)
+

∫

X

h(y)Qϕ∗(dy|x).

If x ∈ X \N , by (5.3.14) we have ϕ∗(·|x) = ϕ(·|x) and, by (5.3.12),

h(x) + V (θ0) = rϕ(x) +

q∑

i=1

λ0i

(
ciϕ(x) − θi

)
+

∫

X

h(y)Qϕ(dy|x)

= rϕ∗(x) +

q∑

i=1

λ0i

(
ciϕ∗(x) − θi

)
+

∫

X

h(y)Qϕ∗(dy|x).

This complete the proof of (5.3.17).

5.4 A parametric family of AROEs

Theorem 5.3.1 shows that the constrained control problem (5.1.1)-(5.1.2) in-
duces a non-constrained problem depending on a q-vector Λ0 ∈ R

q such that
Λ0 ≤ 0. However, Λ0 is unknown and its value is obtained from the func-
tion V , which is precisely the function that we want to determine. The next
theorem shows that the constrained problem (5.1.1)-(5.1.2) can be solved by
means of a parametric family of AROEs.

Theorem 5.4.1 Suppose that the same hypotheses as in Theorem 5.3.1 are
satisfied, and consider the CP (5.1.1)-(5.1.2). For each q-vector Λ ≤ 0, let
(ρ(Λ), hΛ) ∈ R ×BW (X) be a solution to the AROE

hΛ(x)+ρ(Λ) = sup
a∈A(x)

[
r(x, a)+(~c(x, a)−θ0)·Λ+

∫

X

hΛ(y)Q(dy|x, a)
]

(5.4.1)

for every x ∈ X, where ~c(x, a) = (c1(x, a), · · · , cq(x, a)). Then

V (θ0) ≡ V ∗(θ0) = min
Λ≤0

ρ(Λ). (5.4.2)
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Proof. From the proof of Theorem 5.3.1, there exists an optimal policy
ϕ∗ ∈ Φ for the constrained control problem (5.1.1)-(5.1.2) such that V (θ0) =∫

K
rdµ̂ϕ∗ , with V (θ0) as in (5.2.5). Notice that for each q-vector Λ ≤ 0

V (θ0) =

∫

K

rdµ̂ϕ∗ ≤
∫

K

[r + (~c− θ0) · Λ]dµ̂ϕ∗ .

By (5.4.1), for all x ∈ X we have

hΛ(x) + ρ(Λ) ≥ rϕ∗(x) + (~cϕ∗(x) − θ0) · Λ +

∫

X

hΛ(y)Qϕ∗(dy|x)

Integrating both sides of this inequality with respect to the i.p.m. µϕ∗

ρ(Λ) ≥
∫

X

[rϕ∗(x) + (~cϕ∗(x) − θ0) · Λ]µϕ∗(dx)

=

∫

K

[r + (~c− θ0) · Λ]dµ̂ϕ∗ ≥ V (θ0) ∀Λ ≤ 0.

Therefore
inf
Λ≤0

ρ(Λ) ≥ V (θ0). (5.4.3)

By the AROE (5.4.1) again, with Λ = Λ0 as in Theorem 5.3.1, and by
Theorem 2.4.3(i), there exists f ∈ F such that

hΛ0
(x) + ρ(Λ0) = sup

a∈A(x)

[
r(x, a) + (~c(x, a) − θ0) · Λ0 +

∫

X

hΛ0
(y)Q(dy|x, a)

]

= rf (x) + (~cf (x) − θ0) · Λ0 +

∫

X

hΛ0
(y)Qf (dy|x)

for all x ∈ X. Let us consider h ∈ BW (X) as in the optimality equation in
Theorem 5.3.1(ii), i.e.,

h(x) + V ∗(θ0) = sup
a∈A(x)

[
r(x, a) + (~c(x, a) − θ0) · Λ0 +

∫

X

h(y)Q(dy|x, a)
]

for all x ∈ X. This implies

h(x) + V ∗(θ0) ≥ rf (x) + (~cf (x) − θ0) · Λ0 +

∫

X

h(y)Qf (dy|x),
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and so

(h(x) − hΛ0
(x)) + (V ∗(θ0) − ρ(Λ0)) ≥

∫

X

[h(y) − hΛ0
(y)]Qf (dy|x)

for all x ∈ X. Integrating both sides by the i.p.m. µf , we have

V (θ0) = V ∗(θ0) ≥ ρ(Λ0)

Comparing with inequality (5.4.3), we obtain the result desired (5.4.2)

5.5 Existence of pathwise constrained opti-

mal policies

MCPs with pathwise constraints. With the notation above, and recall-
ing Definition 3.1.1, we want to maximize (with probability one) the pathwise
average reward

S(π, x) = lim inf
n→∞

1

n
Sn(π, x)

over the set of all policies π ∈ Π satisfying that

Si(π, x) = lim sup
n→∞

1

n
Si,n(π, x) ≤ θi for i = 1, · · · , q, P π

x − a.s.

with Si,n(π, x) :=
∑n−1

k=0 E
π
x [ci(xk, ak)|hk] for n = 1, 2, · · ·, i = 1, · · · , q. In

short, we will write

maximize S(π, x) (5.5.1)

subject to: π ∈ Π and Si(π, x) ≤ θi ∀x ∈ X, i = 1, · · · , q. (5.5.2)

Definition 5.5.1 We say that a policy ϕ∗ ∈ Φ such that gi(ϕ
∗) := µϕ∗(ciϕ∗) ≤

θi for i = 1, · · · , q, is optimal for the pathwise CP (5.5.1)-(5.5.2) if for each
x ∈ X and every π ∈ Π such that Si(π, x) ≤ θi for i = 1, · · · , q, P π

x − a.s.,
we have

S(π, x) ≤ g(ϕ∗) := µϕ∗(rϕ∗) P π
x − a.s.
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By Theorem 5.3.1, we know that there exists an optimal (randomized) sta-
tionary policy for the “expected constrained problem” (5.1.1)-(5.1.2), which
will be denoted by ϕ∗ ∈ Φ. Thus, we have

g(ϕ∗) =

∫

K

rdµ̂ϕ∗ = V ∗(θ0) and gi(ϕ
∗) =

∫

K

cidµ̂ϕ∗ ≤ θi. (5.5.3)

The following theorem proves that this optimal policy ϕ∗ is also optimal for
(5.5.1)-(5.5.2).

Theorem 5.5.2 Suppose that Assumptions 2.1.1, 2.1.2, 2.4.2, 3.2.1 and
5.2.1 hold. Moreover, suppose that the cost functions ci belong to Bw(X),
where w(x) =

√
W (x) for all x ∈ X. If ϕ∗ ∈ Φ is an optimal policy for the

(expected) CP (5.1.1)-(5.1.2), then ϕ∗ is also optimal for the pathwise CP
(5.5.1)-(5.5.2).

Proof. Consider ϕ∗ as in (5.5.3), that is, an optimal policy for the con-
strained problem (5.1.1)-(5.1.2). Let Λ0 be as in Theorem 5.3.1 and fix an
initial state x ∈ X and an arbitrary randomized policy π ∈ Π. Define

r̃(x, a) := r(x, a) + (~c(x, a) − θ0) · Λ0 ∀(x, a) ∈ K.

From Theorem 5.3.1(ii), there exists h ∈ Bw(X) such that

V ∗(θ0) ≥ r̃(x, a) +

∫

X

h(y)Q(dy|x, a) − h(x) ∀(x, a) ∈ K.

Therefore, for every k = 0, 1, · · ·,

V ∗(θ0) ≥ r̃(xk, ak) +

∫

X

h(y)Q(dy|xk, ak) − h(xk)

= r̃(xk, ak) + Eπ
x [h(xk+1)|hk, ak] − h(xk)

with hk the admissible history up to time k. Taking conditional expectations
with respect to hk, we have

V ∗(θ0) ≥ Eπ
x [r̃(xk, ak)|hk] + Eπ

x [h(xk+1)|hk] − h(xk)

= Eπ
x [r̃(xk, ak)|hk] + Lπh(xk) P π

x − a.s.

with Lπh(xk) as in Lemma 3.2.6. Hence, for each n = 1, 2, · · ·,

V ∗(θ0) ≥
1

n
Sn(π, x) +

q∑

i=1

λ0i

( 1

n
Si,n(π, x) − θi

)
+

1

n

n−1∑

k=0

Lπh(xk) P π
x − a.s.
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Taking the limit as n → ∞, and taking into account the limit given by
Lemma 3.2.6, together with the fact that λ0i ≤ 0,

V ∗(θ0) −
q∑

i=1

λ0i

(
Si(π, x) − θi

)
≥ lim sup

n→∞

[ 1

n
Sn(π, x) +

1

n

n−1∑

k=0

Lπh(xk)
]

≥ lim inf
n→∞

1

n
Sn(π, x) + lim

n→∞

1

n

n−1∑

k=0

Lπh(xk)

= S(π, x) P π
x − a.s.

That is

V ∗(θ0) ≥ S(π, x) +

q∑

i=1

λ0i

(
Si(π, x) − θi

)
P π

x − a.s. (5.5.4)

for all x ∈ X and each π ∈ Π. If π verifies Si(π, x) ≤ θi P π
x − a.s., and

recalling that Λ0 ≤ 0, then S(π, x) ≤ V ∗(θ0) P
π
x − a.s., which together with

(5.5.3) completes the proof.

Concluding remarks. In this chapter we have studied pathwise average
reward discrete-time MCM with pathwise constraints on Borel spaces. Under
suitable assumptions we have shown the existence of optimal policies. To this
end, we give conditions for the existence of optimal policies for the problem
with expected constraints. In addition, we have shown that the expected
problem can be solve by means of a parametric family of AROEs. Further-
more, the examples in Chapter 6 show that our assumptions are satisfied
with no special degree of difficulty.

An open question is whether our results here can be extended for more
general MCMs (no necessarily under our fixed point approach). A second
open question is the minimization of variance for the pathwise constrained
problem, that is, we would like to prove the existence, within the class of
stationary optimal policies for the pathwise CP, of one with minimal limiting
average variance. Another question is to find approximation schemes where
the optimum value as well as the optimal policy can be approximated for the
problem with pathwise constraints.



Chapter 6

Examples

6.1 Introduction

In this chapter we illustrate the results in Theorems 5.3.1, 5.4.1 and 5.5.2.
We consider an X-valued controlled processes {xt} of the form

xt+1 = F (xt, at, zt), t = 0, 1, · · · , (6.1.1)

and we always suppose the following:

Assumption 6.1.1

(a) The disturbance sequence {zt} in (6.1.1) consists of independent and iden-
tically distributed (i.i.d.) random variables with values in a Borel space Z,
and {zt} is independent of the initial state x0. The common distribution of
the zt is denoted by G.

(b) F : K × Z → X is a given measurable function, where K ⊂ X × A is the
set defined in (1.3.1).

Let π be an arbitrary control policy. By Assumption 6.1.1(a), the vari-
ables (xt, at) and zt are independent for each t = 0, 1, · · ·. Then the transition
law Q is given by

Q(B|x, a) = Prob(xt+1 ∈ B|xt = x, at = a)

=

∫

Z

1B[F (x, a, z)]G(dz) (6.1.2)

72
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for every B ∈ B(X), (x, a) ∈ K, and t = 0, 1, · · ·. Moreover, for every
bounded measurable function u on X, we have

u′(x, a) :=

∫

X

u(dy)Q(dy|x, a) = E[u(xt+1)|xt = x, at = a]

=

∫

Z

u[F (x, a, z)]G(dz). (6.1.3)

6.2 A LQ system

In this section we present a Linear-Quadratic system that satisfies all the
hypotheses of Theorems 5.3.1, 5.4.1 and 5.5.2, that is, Assumptions 2.1.1,
2.1.2, 2.4.2, 3.2.1 and 5.2.1.

Consider the linear system

xt+1 = k1xt + k2at + zt, t = 0, 1, · · · , (6.2.1)

with state space X := R and positive coefficients k1, k2. The control set is
A := R, and the set of admisible controls in each state x is the interval

A(x) := [−k1|x|/k2, k1|x|/k2]. (6.2.2)

The disturbance zt in (6.2.1) consists of i.i.d. random variables with values
in Z := R, and with zero mean and finite variance, that is,

E(zt) = 0 and σ2 := E(z2
t ) <∞. (6.2.3)

To complete the description of our constrained control model we introduce
the quadratic reward-per-stage function

r(x, a) := B − (r1x
2 + r2a

2) ∀(x, a) ∈ K, (6.2.4)

with positive coefficients B, r1, and r2, and the cost-per-stage function

c(x, a) := c1x
2 + c2a

2 ∀(x, a) ∈ K, (6.2.5)

with positive coefficients c1, c2. We also define

W (x) := exp[γ|x|] for all x ∈ X, (6.2.6)
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with γ ≥ 2. Observe that W ≥ 1 and Assumptions 2.1.1 and 3.2.1 hold.
Moreover, we can see that c2 ∈ BW (X). Note that w :=

√
W is continuous

on K and that it is a moment function on K as in Assumption 5.2.1-(d).
Moreover, let ŝ > 0 be such that

γŝ < log(γ/2 + 1)

which implies

λ :=
2

γ
(exp[γŝ] − 1) < 1. (6.2.7)

Throughout the rest of this chapter, we suppose the following Assump-
tions taken from [19, Section 5]:

Assumption 6.2.1 0 < k1 < 1/2.

Assumption 6.2.2 The i.i.d. disturbances zt have a common density g,
which is a continuous bounded function supported on the interval S := [−ŝ, ŝ].
Moreover, there exists a positive number ε such that g(s) ≥ ε for all s ∈ S.

Let S0 := [0, ŝ], and let Υ be the Lebesgue measure on X = R. We define

l(x, a) := 1S0
(x) ∀(x, a) ∈ K, and ν(B) := εΥ(B ∩ S0) ∀B ∈ B(X). (6.2.8)

Then, from [19, Propositions 23 and 24] we have the following.

Proposition 6.2.3 Under the Assumptions 6.2.1 and 6.2.2, the LQ system
(6.2.1)-(6.2.5) satisfies the Assumptions 2.1.2, 2.4.2 and 5.2.1.

Remark 6.2.4 Assumptions 2.1.2 and 2.4.2 are used in [19] to get condi-
tions for bias optimality and strong 0-discount optimality to be equivalent.

Proposition 6.2.5 Suppose that Assumptions 6.2.1 and 6.2.2 hold. Then
the LQ system (6.2.1)-(6.2.5) has a constrained optimal policy which is also a
pathwise constrained optimal policy. Moreover, for each Λ ≤ 0 let (ρ(Λ), hΛ) ∈
R ×BW (X) be a solution to the AROE

hΛ(x) + ρ(Λ) = sup
a∈A(x)

[
rΛ(x, a) +

∫

X

hΛ(y)Q(dy|x, a)
]
, (6.2.9)

with rΛ(x, a) := r1(Λ)x2 +r2(Λ)a2 + b, where ri(Λ) := Λ · ci−ri < 0, i = 1, 2,
and b := B − Λ · θ0, then the constrained optimal value V ∗(θ0) satisfies

V ∗(θ0) = min
Λ≤0

ρ(Λ) (6.2.10)
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Proof. From Proposition 6.2.3, the assumptions in Theorems 5.3.1, 5.4.1
and 5.5.2 are satisfied. Hence, the stated result follows from these theorems.

Example 6.2.6 Now we analyse a particular case in which the reward-per-
stage function (6.2.4) and the cost-per-stage function (6.2.5) satisfy r1 = r2
and c1 = c2, respectively, and k2 = 1 in (6.2.1). For this case, we will find the
optimal value and the optimal policy for the LQ model above, with expected
and pathwise constraints.

Note that
r1(Λ) = r2(Λ) ∀Λ ≤ 0. (6.2.11)

On the other hand, in [19, Section 5], it is proved, under the Assumptions
6.2.1 and 6.2.2, that ρ(Λ) in the AROE (6.2.9) has the form

ρ(Λ) = b− v0σ
2, (6.2.12)

with σ as in (6.2.3), and v0 is the unique positive solution to the quadratic
(so-called Riccati) equation

k2
2v

2
0 + [k2

2r1(Λ) + k2
1r2(Λ) − r2(Λ)]v0 − r1(Λ)r2(Λ) = 0. (6.2.13)

Note that v0 dependes on Λ. Moreover, if we define

fΛ(x) := −f̂0x ∀x ∈ X, with f̂0 := (k2
2v0 − r2(Λ))−1k1k2v0. (6.2.14)

and
hΛ(x) := −v0x

2 (6.2.15)

then, by a direct calculation we can show that (hΛ, fΛ, ρ(Λ)) is a canonical
triplet that satisfies the AROE (6.2.9).

Since r2(Λ) < 0 , we have |fΛ(x)| ≤ k1/k2|x|, and so, fΛ(x) ∈ A(x) for all
x ∈ X, that is, fΛ is in F.

By (6.2.11), the positive solution of (6.2.13) is

v0 = −kr1(Λ) with k =
k2

1 +
√
k4

1 + 4

2
. (6.2.16)

Inserting this values in (6.2.12) and using the definition of the constant b, we
obtain the explicit form of ρ(Λ)

ρ(Λ) = B − (σ2k) · r1 + [(σ2k) · c1 − θ0]Λ (6.2.17)
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which is the equation of a straigth line with slope (σ2k) · c1 − θ0. Because
we need to choose θ0 satisfying the relation (6.2.10), then we have to impose
the following assumption:

(σ2k) · c1 < θ0. (6.2.18)

Under this condition, we have that

V ∗(θ0) = min
Λ≤0

ρ(Λ)

= min
Λ≤0

(
B − (σ2k) · r1 + [(σ2k) · c1 − θ0]Λ

)

= B − (σ2k) · r1 = ρ(0). (6.2.19)

Thus, the minimun is attained in Λ = 0 and V ∗(θ0) = ρ(0). Furthermore,
inserting Λ = 0 in (6.2.14) and (6.2.15), we obtain

f0(x) = −f̂0x with f̂0 :=
kk1

1 + k
, (6.2.20)

for all x ∈ X, and
h0(x) = −kr1x2 ∀x ∈ X. (6.2.21)

Since (h0, f0, V
∗(θ0)) is a canonical triplet, then the following average reward

optimality equation is satisfied:

V ∗(θ0) + h0(x) = sup
a∈A(x)

[
r(x, a) +

∫

X

h0(y)Q(dy|x, a)
]

= rf0
(x) +

∫

X

h(y)Qf0
(dy|x) ∀x ∈ X,

(6.2.22)

which is the equation (5.3.2) in Theorem 5.3.1. Moreover, we assert that
the deterministic policy f0 defined in (6.2.20) is an optimal policy for the
constrained LQ system. To do this, we present the following result which is
a slight variation of Lemma 6.5 in [13].

Lemma 6.2.7 Let f ∈ F be a deterministic policy given by f(x) := −f̂x for

all x ∈ X, and let k̂ := k1 − k2f̂ , where k1, k2 are the coefficients in (6.2.1).

Here f̂ is a constant. Suppose that |k̂| < 1. Then, for all x ∈ X

J(f, x) = lim inf
n→∞

1

n
Ef

x

n−1∑

k=0

rf (xk) = B − (r1 + r2f̂
2)σ2/(1 − k̂2), (6.2.23)
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and

J1(f, x) = lim sup
n→∞

1

n
Ef

x

n−1∑

k=0

cf (xk) = (c1 + c2f̂
2)σ2/(1 − k̂2). (6.2.24)

with r and c as defined in (6.2.4) and (6.2.5), respectively.

Proof. Replacing at in (6.2.1) with at := f(xt) = −f̂xt, we obtain

xt = (k1 − k2f̂)xt−1 + zt−1 = k̂xt−1 + zt−1 ∀t = 1, 2, · · · .

By an induction procedure, for all t = 1, 2, · · ·,

xt = k̂tx0 +
t−1∑

j=0

k̂jzt−1−j.

From this relation, we obtain

Ef
x (x2

t ) = k̂2 + (σ2(1 − k̂2t))/(1 − k̂2).

This yields that

lim sup
n→∞

1

n

n−1∑

t=0

Ef
x (x2

t ) = lim inf
n→∞

1

n

n−1∑

t=0

Ef
x (x2

t ) = σ2/(1 − k̂2). (6.2.25)

Since a = f(x) = −f̂x, we obtain

rf (x) = B − (r1 + r2f̂
2)x2 and cf (x) = (c1 + c2f̂

2)x2 (6.2.26)

for all x ∈ X. Finally, inserting (6.2.25) in (6.2.26) we obtain (6.2.23) and
(6.2.24).

If f0 is as in (6.2.20), and recalling that r1 = r2 and c1 = c2, k2 = 1, we

have that |k̂| = k1/(1+k) < 1, with k̂ := k1− f̂0 and k as in (6.2.16). Hence,
by Lemma 6.2.7, a direct calculation yields that, for all x ∈ X,

J(f0, x) = B − (σ2k)r1 and J1(f0, x) = (σ2k)c1.

Finally, from (6.2.18) and (6.2.19), we have

J(f0, x) = V ∗(θ0) and J1(f0, x) < θ0,

that is, f0 is a constrained optimal policy, which is also pathwise constrained
optimal for the LQ system (6.2.1)-(6.2.5).
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Figure 6.1: Graph of ρ(Λ) as a function on Λ ≤ 0.

We will illustrate our LQ system (6.2.1)-(6.2.5) with the following nu-
merical special case. Suppose that the reward-per-stage function (6.2.4)
and the cost-per-stage function (6.2.5) satisfy r1 = 1, r2 = 2, B = 10, and
c1 = c2 = 1, respectively. Moreover, assume that k1 = 1/3, k2 = 1 in (6.2.1)
and θ0 := 191/180.

In this particular case, solving the Riccati equation (6.2.13), and inserting
the corresponding value in (6.2.12), we obtain

ρ(Λ) =
(
187 − 18.1Λ −

√
325Λ2 − 958Λ + 697

)
/18 ∀Λ ≤ 0. (6.2.27)

As can be seen from the graph of ρ(Λ) for Λ ≤ 0, the function ρ(Λ) has a
minimum (see Fig. 6.1). By elementary calculus, we get that ρ(Λ) has a
unique minimun in

Λmin = −0.38767819 · · · ,
with minimun value

ρ(Λmin) = 8.921767464 · · · .

From Proposition 6.2.5, ρ(Λmin) is the optimal value for the constrained
problem, that is

V ∗(θ0) = ρ(Λmin) = 8.921767464 · · · , with θ0 = 191/180.

In addition
v0 ≡ v0(Λmin) = 1.48960217 · · · .

By (6.2.14) and (6.2.15), we have that

fΛmin
(x) = −f̂0x ∀x ∈ R, with f̂0 = 0.12806246 · · · .
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and
h(x) ≡ hΛmin

(x) = −v0x
2.

By a straigthforward calculation, we can check that (V ∗(θ0), fΛmin
, h) is a

canonical triplet that satisfies the AROE (5.3.1) in Theorem 5.3.1. More-
over, we assert that fΛmin

is a constrained optimal policy, and therefore by
Proposition 6.2.5, it is also a pathwise constrained optimal policy. Indeed,
by Lemma 6.2.7, we have

J(fΛmin
, x) = 8.9217674 · · · ,

which coincides with the optimal value V ∗(θ0), with θ0 = 191/180. Finally,
by a similar calculation, we obtain

J1(fΛmin
, x) = 1.061111 · · · = 191/180.

Hence
J(fΛmin

, x) = V ∗(θ0) and J1(fΛmin
, x) = θ0,

and so the constrained problem is solved.

6.3 An inventory system

The inventory-production system in this section has been studied by Vega-
Amaya [28, 29] and by Hernández-Lerma and Vega-Amaya in [17].

We consider an inventory-production system in which the stock level xt

evolves in X := [0,∞) according to the equation

xt+1 = max(xt + at − zt, 0), t = 0, 1, · · · , (6.3.1)

for some given initial stock level x0. Here at is the amount of product ordered
(and immediately supplied) at the beginning of each period t, whereas zt

denotes the product’s demand during that period. The production variables
at are supposed to take values in the interval A := [0,Ω], for some given
constant Ω > 0 irrespective of the stock level, that is,

A(x) = A ∀x ∈ X. (6.3.2)

Additionally, we suppose that the demand process {zt} satisfies Assumption
6.1.1 with Z := [0,∞), and that the demand distribution G satisfies the
following assumption:
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Assumption 6.3.1 (a) G has a continuous bounded density g;

(b) G has a finite mean value z̄, i.e., z̄ := E(z0) =
∫ ∞

0
zG(dz) < ∞, where

E denotes the expectation with respect to G.

(c) Ω < z̄.

To complete our control model, we introduce a reward-per-stage function
r that represents a net reward of the form

sales revenue–(production cost+maintenance cost)

given by

r(x, a) := s · Emin(x+ a, z0) − [p · a+m · (x+ a)] ∀(x, a) ∈ K, (6.3.3)

where p, m and s are positive constants. The unit production p and the unit
maintenance cost m do not exceed the unit sale price, i.e.,

p,m ≤ s, (6.3.4)

and the cost-per-stage function c of the form

production cost+maintenance cost

given by

c(x, a) := p · a+m · (x+ a) ∀(x, a) ∈ K. (6.3.5)

We can verify that

Emin(x+ a, z0) = (x+ a)[1 −G(x+ a)] +

∫ x+a

0

zG(dz). (6.3.6)

Thus, the functions r and c in (6.3.3) and (6.3.5) are continuous on K =
X × A.

On the other hand, consider the moment generating function Ψ of the
random variable Ω − z0, Ψ(r) := E exp[r(Ω − z0)], for r ≥ 0. Note that
Ψ(0) = 1 and by Assumption 6.3.1(c), Ψ′(0) = E(Ω − z0) = Ω − z̄ < 0.
Hence, there is a positive number r̂ such that

λ := Ψ(r̂) < 1. (6.3.7)



CHAPTER 6. EXAMPLES 81

We define the weigth function

W (x) := exp[r̂(x+ 2z̄)], ∀x ∈ X. (6.3.8)

Then W ≥ 1 and by a straigthforward calculation using Assumption 6.3.1(c),
(6.3.4) and (6.3.6), we can see that there exist constants K and ω such that

|r(x, a)| ≤ KW (x) and |c(x, a)| ≤ ωW (x) ∀(x, a) ∈ K.

Moreover, we can check that r2, c2 belong to BW (X). Hence, Assumptions
2.1.1 and 3.2.1 are satisfied.

We shall now proceed to verify the Assumptions 2.1.2, 2.4.2 and 5.2.1.
To do this, note that from (6.3.1) and (6.1.3) we obtain

ū(x, a) :=

∫

X

u(y)Q(dy|x, a)

= u(0)[1 −G(x+ a)] +

∫ x+a

0

u(x+ a− z)g(z)dz

= u(0)[1 −G(x+ a)] +

∫ x+a

0

u(z)g(x+ a− z)dz.

(6.3.9)

for every bounded measurable function u on X.
We also define for every (x, a) ∈ K and B ∈ B(X)

l(x, a) := 1 −G(x+ a) , and ν(B) := δ0(B), (6.3.10)

with δ0 the Dirac measure at x = 0.

Proposition 6.3.2 With the notation above and under Assumption 6.3.1,
we have that the inventory-production system (6.3.1)-(6.3.5) satisfies As-
sumptions 2.1.2, 2.4.2 and 5.2.1.

Proof. By Assumption 6.3.1, (6.3.2), (6.3.3), (6.3.5), (6.3.6), (6.3.8) and
(6.3.10), then Assumptions 2.1.2(a), 2.4.2(a), 2.4.2(b), 2.4.2(e), and 5.2.1(b)-
(e) obviously hold.

From (6.3.9) and (6.3.10), it follows that

Q(B|x, a) ≥ δ0(B)l(x, a) ∀B ∈ B(X), (x, a) ∈ K,
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that is, Assumption 2.1.2(b) holds.
From (6.3.9) again, with u = W ,

∫

X

W (y)Q(dy|x, a) = W (0)[1 −G(x+ a)] +

∫ x+a

0

W (x+ a− z)g(z)dz

= ν(W )l(x, a) +W (x)

∫ x+a

0

exp[r̂(a− z)]G(dz),

(6.3.11)

so that, since r̂(a− x) ≤ r̂(Ω − x) for all a ∈ A and by (6.3.7), we get

∫

X

W (y)Q(dy|x, a) ≤ ν(W )l(x, a) + λW (x) ∀(x, a) ∈ K.

This gives Assumption 2.1.2(c).
To prove Assumption 2.1.2(d), with l(x, a) and ν as defined in (6.3.10),

note that for each ϕ ∈ Φs

lϕ(x) ≥ 1 −G(x+ Ω).

Here, integrating both sides with respect to ν = δ0:

ν(lϕ) ≥ 1 −G(Ω) ∀ϕ ∈ Φs. (6.3.12)

We only need to show that G(Ω) < 1. If G(Ω) = 1 we obtain

z̄ =

∫ ∞

0

zG(dz)

=

∫ Ω

0

zG(dz) +

∫ ∞

Ω

zG(dz)

≤ ΩG(Ω) = Ω

which contradicts Assumption 6.3.1(c).
Finally, Assumptions 2.4.2(c) and 5.2.1(a) follow from (6.3.9), and As-

sumption 2.4.2(d) follows from (6.3.11).

Proposition 6.3.3 Suppose that Assumption 6.3.1 holds. Then the inventory-
production system (6.3.1)-(6.3.5) has a constrained optimal policy which is
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also a pathwise constrained optimal policy. Moreover, for each Λ ≤ 0 let
(ρ(Λ), hΛ) ∈ R ×BW (X) be a solution to the AROE

hΛ(x) + ρ(Λ) = sup
a∈A(x)

[
rΛ(x, a) +

∫

X

hΛ(y)Q(dy|x, a)
]
, (6.3.13)

with rΛ(x, a) := r(x, a)+ (c(x, a)− θ0) ·Λ, then the constrained optimal value
V ∗(θ0) satisfies

V ∗(θ0) = min
Λ≤0

ρ(Λ) (6.3.14)

Proof. From Proposition 6.3.2, the assumptions in Theorems 5.3.1, 5.4.1
and 5.5.2 are satisfied. Hence, the stated result follows from these theorems.



Chapter 7

Conclusions and open problems

In this thesis we study average reward discrete-time Markov control processes
on Borel spaces. Our main results include:

(a) explicit expressions for the invariant measure, the solution of the P.E.
and the solution of the AROE,

(b) existence of pathwise average optimal policies, with minimum variance
and an asymptotic normality behavior

(c) existence of constrained optimal policies,

(d) existence of constrained pathwise average optimal policies.

To analyze our problems we proceed in three steps:
In the first one, we give explicit expressions for the invariant measures,

also for the functions h∗ϕ that solve the P.E., and the functions h∗ that solve
the AROE. This fact will be particularly useful to prove boundedness condi-
tions, necessary for a nice asymptotic behavior (law of large numbers, asymp-
totic normality) and to prove compactness conditions.

In the second step we prove, under our assumptions, the existence of un-
constrained sample-path optimal policies (part (b) above). The main result
here is Theorem 3.3.2, which together with Theorem 2.4.3 gives the existence
of deterministic stationary sample-path average optimal policies. To this end
we applied the law of large numbers for martingales, also known as the mar-
tingale stability theorem. Furthermore, we solve a variance-minimization
problem. So, we prove the existence among the canonical policies for which

84
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the optimization problem is solved, of those policies with minimal variance.
We also show that these canonical policies with minimal variance imply
asymptotic normality behavior.

In the third and final step we study part (c) and (d), and we extend the
results in the former steps for constrained MCPs. Thus, the unconstrained
AROEs in Theorem 2.4.3 is extended to the constrained case in Theorem
5.3.1, which in particular gives us the existence of optimal policies to our
problem with expected constraints. Moreover, Theorem 5.4.1 shows that
the expected CP can be solved by means of a parametric family of AROEs,
which do not depend on unknown parameters. Finally, in Theorem 5.5.2,
we extend these results to MCPs with pathwise constraints. In particular,
we prove that the constrained optimal policies are also pathwise constrained
optimal policies.

There are several standard techniques to analyze discrete-time constrained
control problems. For example the so-called direct method where the idea is to
transform the constrained problem into an equivalent optimization problem
in a suitable space of measures, and then one uses the well-known fact that
an upper semicontinuous (u.s.c.) function on a compact topological space
attains its maximun value. For example, the proof of Theorem 5.3.1 uses in
part the direct method in combination with other techniques such as con-
vex analysis, Lagrange multipliers and dynamic programming. On the other
hand, to analyse the pathwise constrained problem, we use the strong law of
large number for Markov chains and also the martingale stability theorem.

As future work for CMCPs with expected and pathwise constraints, we
consider several questions. The first one, is a variance minimization problem,
that is, we would like to prove the existence, within the class of stationary
optimal policies for the pathwise CP, of one with minimal limiting average
variance. The second question is to find approximation schemes where the
optimum value as well as the optimal policy can be approximated for the
problem with pathwise constraints.
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